Skip to main content

AVs need extreme training, says research

AVs will be safer if they are given 'one-in-a-million' collision risk scenarios to learn from
By Adam Hill May 24, 2022 Read time: 3 mins
Researchers looked at millions of hours of footage from CCTVs and dashcams (© Phuttaphat Tipsana | Dreamstime.com)

New research has found that driverless cars are six times safer and better at detecting a collision risk if they are trained using the most extreme - 'one-in-a-million' - examples of accidents and near-misses, rather than via more traditional approaches.

Imperial College London, DRisk.ai, DG Cities and Claytex used real-life examples of accidents crowd-sourced from the public in the D-Risk initiative, which was funded by Innovate UK as part of a project linked to the Centre For Connected and Autonomous Vehicles.

The research was conducted in the UK in February and March 2022, and looked at millions of hours of footage from CCTVs and dashcams.

This covered a wide variety of traffic conditions, hundreds of thousands of accident reports, and crowdsourced public stories of near-miss and chance accident scenarios.

D-Risk used the most unusual high-risk circumstances "to retrain the perceptual and control subsystems in AVs to deal with risky scenarios with greater accuracy". 
 
It found that this can achieve a "six-fold improvement on the detection an incident or collision will occur compared to AVs trained using traditional accident data". 
 
"AVs are twice as likely to be accurate in their detection of a collision risk without compromising performance on detecting other more frequent types of accident and can achieve a 20 times improvement on the ability to contend with highly difficult traffic conditions that would otherwise lead to serious or fatal accidents, without decreasing performance on handling everyday conditions," the researchers added. 
 
The findings have been summarised in Virtual verification of decision making and motion planning functionalities for AVs in the urban edge case scenarios, a paper which has been submitted and accepted by the Society for Automotive Engineers (SAE). 
 
“No deployment has yet been able to demonstrate this kind of accuracy when it comes to road safety,” explains Chess Stetson, CEO at DRisk.ai.

“To be commercially viable, driverless cars are going to have to deal with one-in-a-million edge cases — the complex, high-risk scenarios, which are individually unlikely but collectively make up the majority of risk. They include everything from poorly marked construction zones, abandoned vehicles, and oddly placed traffic cones to more extreme cases of wild animals in the road."
 
Regulators need this sort of information in AV pilots, "because it can help inform urban strategy, AV policy, insurance, safety standards and licencing”
 
D-Risk also explored the UK public’s perception of AVs and found that there is a large gap between perceived and actual safety that manufacturers, developers and regulators need to address.
 
In focus groups, people observed pairs of simulated videos of reconstructed accidents involving a sudden stop, turning right and overtaking a bike.

Participants weren’t told whether they were watching a human driver or a driverless vehicle - and in all three scenarios, people judged humans to be more dangerous, less predictable, slower and less accurate in their decision making than AVs.   
 
The Imperial College team also performed large-scale group virtual reality (VR) experiments that measured participants’ movement around AVs.

Dr Panagiotis Andeloudis, reader and Head of Transport Systems and Logistics Laboratory at Imperial College London, says that VR experiments should be used to augment developers’ understanding of risk outside the cockpit and could help other organisations like insurers and town planners understand risk.

"Risk isn’t only about what happens behind the wheel. Pedestrians are not used to AVs and will be more unpredictable. By using VR to simulate scenarios where pedestrians come into contact with AVs, we can find more edge cases to plan for. Above all, it provides a proof-of-concept for fully testing the interaction of pedestrians with AV design.”

For more information on companies in this article

Related Content

  • Cubic: predictive analytics is putting fortune tellers out of business
    November 23, 2018
    The rise of machine learning and artificial intelligence means that fortune tellers will soon be out of business. Ed Chavis takes a behind the scenes look at the world of predictive analytics ver since organisations started taking advantage of insights derived from Big Data, data scientists concentrated their efforts on the ability to make correct assumptions about the future. A few years later, with the help of automation, developments in machine learning (ML) and advancements in the application of a
  • UR:BAN developing driver assistance and traffic management systems
    May 16, 2014
    European vehicle manufacturers, including BMW, Opel and Mercedes-Benz and MAN, are taking part in a new project to develop advanced driver assistance and traffic management systems for cities. The focus is on the human element in all aspects of mobility and traffic and takes the form of three approaches: Cognitive Assistance; Networked Traffic Systems; and Human Factors in Traffic. The four-year UR:BAN project (from a German acronym for Urban Space: User-oriented assistance systems and network managemen
  • Utah Department of Transportation: How we’re using traffic analytics software
    February 4, 2025
    Our use of Iteris ClearGuide lets our traffic operations engineers interpret critical probe traffic data without the need for statisticians and software developers
  • We need to talk about AVs
    October 15, 2021
    Will driverless vehicles lead to more deaths and destroy more lives than their manual counterparts? Transport writer Colin Sowman argues that they will