Skip to main content

Swedish project aims to increase traffic safety with new radar technology

To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety. The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear ba
October 9, 2015 Read time: 2 mins
To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety.

The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear bandwidth limitations.  Project members aim to develop more effective radar technology.

“A migration to the 79GHz band allows for several advantages, such as increased resolution and the possibility of multiple sensors around the vehicle to utilize the same frequency band,” says project leader Jan-Olov Axelsson, Denso.

Within around six months, Qamcom and Amparo will deliver the first 77GHz radar system for monitoring of level crossings to the Swedish Transportation Agency. These systems are meant primarily to prevent train derailments caused by collisions between trains and vehicles.

“With broadband 79 GHz radar systems, which we will now start to develop, there is the opportunity of a wide range of performance improvements that, among other things, allow for an increased level of pedestrian safety, easier installation and improved interference protection. Such systems are also ideal for many other types of traffic monitoring applications,” says Johan Lassing of Qamcom Technology.

“Another advantage when switching to the higher frequency band is the opportunity to develop a global standard for a multi-function radar sensor that supports all ADAS and ITS applications, from near to far range applications,” says Michael Salter, Acreo Swedish ICT.

A large number of EU countries have approved the use of W-band radar and the USA is also very likely to open the frequency band for additional applications shortly.

Radar sensors, components and systems that work with wider bandwidths at higher frequencies have many advantages. With an increased effective bandwidth radar systems can see further and with increased precision and the ability for identification of obstacles increases significantly. Furthermore, the use of higher frequencies allows for the reduction in the size of microwave components and antennas. The new technology is therefore expected eventually to be less expensive than today’s systems.

Related Content

  • ITS America, transportation leaders urge FCC to reject call for stay of safety spectrum
    August 31, 2016
    ITS America and other leaders in the intelligent transportation community have united to call on the Federal Communications Commission (FCC) to deny a request by Public Knowledge and the New America Foundation for an emergency stay on the use of dedicated short range communications in the 5.9GHz spectrum band. The petition was made in a joint FCC filing by the Intelligent Transportation Society of America, the Alliance of Automobile Manufacturers and the Association of Global Automakers.
  • Flir takeover of Traficon and the role of thermal imaging
    February 28, 2013
    Andy Teich, president of commercial systems at Flir, discusses the growing role of thermal technology in ITS and his company’s latest high-profile acquisition with Jason Barnes. Andy Teich, Flir’s president of commercial systems, doesn’t want to talk about infrared (IR). Instead, he’d prefer, he says, to discuss ‘thermal technology’. It is, he explains, to differentiate between the imaging technologies which his company specialises in and the LED illumination of IR cameras, an altogether different beast. Fl
  • Arup’s vision of urban mobility in 2050
    May 6, 2015
    Arup’s vision of the Future of Highways considers a wide range of factors that will impact on mobility towards the middle of the century. In its consideration of the Future of Highways through to 2050, international consultants Arup has taken a broad and pragmatic view of where society is heading and the effects that will have on the transport requirements. In terms of major drivers it not only cites
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than