Skip to main content

Swedish project aims to increase traffic safety with new radar technology

To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety. The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear ba
October 9, 2015 Read time: 2 mins
To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety.

The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear bandwidth limitations.  Project members aim to develop more effective radar technology.

“A migration to the 79GHz band allows for several advantages, such as increased resolution and the possibility of multiple sensors around the vehicle to utilize the same frequency band,” says project leader Jan-Olov Axelsson, Denso.

Within around six months, Qamcom and Amparo will deliver the first 77GHz radar system for monitoring of level crossings to the Swedish Transportation Agency. These systems are meant primarily to prevent train derailments caused by collisions between trains and vehicles.

“With broadband 79 GHz radar systems, which we will now start to develop, there is the opportunity of a wide range of performance improvements that, among other things, allow for an increased level of pedestrian safety, easier installation and improved interference protection. Such systems are also ideal for many other types of traffic monitoring applications,” says Johan Lassing of Qamcom Technology.

“Another advantage when switching to the higher frequency band is the opportunity to develop a global standard for a multi-function radar sensor that supports all ADAS and ITS applications, from near to far range applications,” says Michael Salter, Acreo Swedish ICT.

A large number of EU countries have approved the use of W-band radar and the USA is also very likely to open the frequency band for additional applications shortly.

Radar sensors, components and systems that work with wider bandwidths at higher frequencies have many advantages. With an increased effective bandwidth radar systems can see further and with increased precision and the ability for identification of obstacles increases significantly. Furthermore, the use of higher frequencies allows for the reduction in the size of microwave components and antennas. The new technology is therefore expected eventually to be less expensive than today’s systems.

Related Content

  • The benefits of combining enforcement and traffic management
    February 27, 2013
    Jason Barnes considers how combining enforcement equipment with other traffic management technologies might benefit our future – if only the will were really in place to do so. During the ITS World Congress in Vienna in October last year, Navtech Radar and Vysion­ics ITS announced a strategic partnership that would combine the expertise of Navtech in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based automatic number plate recognition (ANPR) and average speed measurement
  • Inertial sensors dramatically improve GNSS for ITS applications
    January 18, 2012
    Phil Harris, Thales UK, on how fused sensor data can significantly enhance GNSS-based positioning systems' performance in urban areas. Global Navigation Satellite System (GNSS)-based positioning is unique among available positioning technology due to its universal coverage and low equipment cost. By measuring the distances between an unknown position (such as a vehicle), and at least three known positions (GPS satellites), the unknown position can be calculated in three dimensions (latitude, longitude, and
  • Driver aids make inroads on improving safety
    November 12, 2015
    In-vehicle anti-collision systems continue to evolve and could eliminate some incidents altogether. John Kendall rounds up the current developments. A few weeks ago, I watched a driver reverse a car from a parking bay at right angles to the road, straight into a car driving along the road. The accident happened at walking pace, no-one was hurt and both cars had body panels that regain their shape after a low speed shunt.
  • Global ADAS market is expected to reach US$60.14 billion by 2020
    May 13, 2015
    A new report from Allied Market Research, Global Advanced Driver Assistance Systems Market Size, Industry Analysis, Trends, Opportunities, Growth and Forecast, 2013 – 2020 claims the global advanced driver assistance systems (ADAS) market will reach US$60.14 billion by 2020, registering a CAGR of 22.8 per cent during 2014-2020. According to the report, the deployment of sensors in vehicles has brought a massive transformation in the automotive industry by providing improved passenger experience and safet