Skip to main content

Swedish project aims to increase traffic safety with new radar technology

To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety. The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear ba
October 9, 2015 Read time: 2 mins
To help achieve the Swedish Transportation Agency’s ‘Nollvisionen’ (zero traffic-related fatalities) and the EU’s traffic safety goal for 2020, Swedish companies Denso, Qamcom, Amparo Solutions and Acreo Swedish ICT are jointly developing the next generation of radar sensors for improved traffic safety.

The 79 GHz UWB Imaging Radar Sensor project claims the market for automotive radar sensors for ADAS is growing rapidly every year, but today’s systems that utilise the 24 GHz and 77GHz bands have clear bandwidth limitations.  Project members aim to develop more effective radar technology.

“A migration to the 79GHz band allows for several advantages, such as increased resolution and the possibility of multiple sensors around the vehicle to utilize the same frequency band,” says project leader Jan-Olov Axelsson, Denso.

Within around six months, Qamcom and Amparo will deliver the first 77GHz radar system for monitoring of level crossings to the Swedish Transportation Agency. These systems are meant primarily to prevent train derailments caused by collisions between trains and vehicles.

“With broadband 79 GHz radar systems, which we will now start to develop, there is the opportunity of a wide range of performance improvements that, among other things, allow for an increased level of pedestrian safety, easier installation and improved interference protection. Such systems are also ideal for many other types of traffic monitoring applications,” says Johan Lassing of Qamcom Technology.

“Another advantage when switching to the higher frequency band is the opportunity to develop a global standard for a multi-function radar sensor that supports all ADAS and ITS applications, from near to far range applications,” says Michael Salter, Acreo Swedish ICT.

A large number of EU countries have approved the use of W-band radar and the USA is also very likely to open the frequency band for additional applications shortly.

Radar sensors, components and systems that work with wider bandwidths at higher frequencies have many advantages. With an increased effective bandwidth radar systems can see further and with increased precision and the ability for identification of obstacles increases significantly. Furthermore, the use of higher frequencies allows for the reduction in the size of microwave components and antennas. The new technology is therefore expected eventually to be less expensive than today’s systems.

Related Content

  • EC backs battery switch project
    February 3, 2012
    A consortium coordinated by Better Place and including Renault SA, Continental, Ernst & Young, TÜV Rheinland, KEMA and five leading European institutions has announced formal approval from the European Commission for an R&D programme to make it easier for European automobile and battery manufacturers to build electric cars with switchable batteries.
  • V2V technologies expected to offer safety benefits, but challenges exist
    November 4, 2013
    A new report by the US Government Accountability office (GAO) expects vehicle to vehicle (V2V) technologies to offer safety benefits, but says that a variety of deployment challenges exist. The report finds that development of V2V technologies has progressed to the point of real world testing, and if broadly deployed, they are anticipated to offer significant safety benefits.
  • Nairobi looks to ITS to ease travel problems
    March 6, 2018
    Shem Oirere looks at plans to tackle chronic congestion in the Kenyan capital - where commuters can typically expect it to take up to two hours to complete a 15km journey. Traffic jams in the Kenyan capital, Nairobi, are estimated to cost the country $360 million a year in terms of lost man-hours, fuel and pollution. According to Wilfred Oginga, an engineer with the Kenya Urban Roads Authority (KURA), the congestion has been exacerbated by poor regulation and enforcement of traffic rules, absence of
  • Nairobi looks to ITS to ease travel problems
    March 6, 2018
    Shem Oirere looks at plans to tackle chronic congestion in the Kenyan capital - where commuters can typically expect it to take up to two hours to complete a 15km journey. Traffic jams in the Kenyan capital, Nairobi, are estimated to cost the country $360 million a year in terms of lost man-hours, fuel and pollution. According to Wilfred Oginga, an engineer with the Kenya Urban Roads Authority (KURA), the congestion has been exacerbated by poor regulation and enforcement of traffic rules, absence of