Skip to main content

Smart sensors could end rail chaos of ‘leaves on the line’

A prototype sensor developed at the University of Birmingham, UK, is could end the annual autumn rail chaos caused by wet leaves on the line. Funded by EPSRC and the Rail Safety and Standards Board, Lee Chapman, Professor of Climate Resilience at the University worked with Alta Innovations, the University’s technology transfer company, to transform the concept into a reality. His new technology, called AutumnSense, uses low-cost sensors to continuously measure the level of moisture on the railway l
November 17, 2016 Read time: 2 mins
A prototype sensor developed at the University of Birmingham, UK, is could end the annual autumn rail chaos caused by wet leaves on the line.  

Funded by EPSRC and the Rail Safety and Standards Board, Lee Chapman, Professor of Climate Resilience at the University worked with Alta Innovations, the University’s technology transfer company, to transform the concept into a reality.

His new technology, called AutumnSense, uses low-cost sensors to continuously measure the level of moisture on the railway line at potentially thousands of sites across the network.  By linking this data with a leaf-fall forecast, operators can identify where and when the risk is greatest.  This allows the precise and efficient use of automated treatment trains, which can clear the lines before the morning rush hour starts.  His team are now testing the next element of the solution which is a low-cost method to count the number of leaves remaining on the trees.

Professor Chapman’s team had previously developed low-cost devices that are fitted to lamp-posts, and transmit data on road surface temperatures, to show precisely where road gritting is needed, and where it isn’t.  The road technology, called WinterSense, is currently being tested by commercial partners and is expected to be in mass production by the end of this winter.  

Chapman is marketing AutumnSense and WinterSense through AltaSense, an operating division of Alta Innovations, and hopes to incorporate by autumn 2017.

Related Content

  • Temporary traffic monitoring with Bluetooth and wi-fi
    May 31, 2013
    David Crawford reviews developments in temporary ITS. Widespread take-up of technologies such as Bluetooth and wi-fi are encouraging the emergence of more sophisticated, while still cost effective, ITS responses to the traffic issues posed by temporary road situations such as work zones and special events. Andy Graham of traffic solutions specialists White Willow Consulting says: “A machine-to-machine radio link is far easier and cheaper than reading characters on a plate.” There can be other plusses. Tech
  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change
  • Rethink required to reduce road transport’s environmental impact
    March 15, 2016
    Against a background of a renewed focus on limiting the rise in average temperatures, Colin Sowman looks at a project that is taking a holistic approach to the environmental impact and safety of road transport. At the COP21 meeting in Paris last December, almost 200 nations agreed to reduce greenhouse gas emissions in an effort to keep the rise in global temperatures to 2°C) compared with pre-industrial levels. The transportation sector is a major contributor to the production of CO2, one of the main green
  • Smartphone solution for parking performance
    March 31, 2017
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.