Skip to main content

Smart sensors could end rail chaos of ‘leaves on the line’

A prototype sensor developed at the University of Birmingham, UK, is could end the annual autumn rail chaos caused by wet leaves on the line. Funded by EPSRC and the Rail Safety and Standards Board, Lee Chapman, Professor of Climate Resilience at the University worked with Alta Innovations, the University’s technology transfer company, to transform the concept into a reality. His new technology, called AutumnSense, uses low-cost sensors to continuously measure the level of moisture on the railway l
November 17, 2016 Read time: 2 mins
A prototype sensor developed at the University of Birmingham, UK, is could end the annual autumn rail chaos caused by wet leaves on the line.  

Funded by EPSRC and the Rail Safety and Standards Board, Lee Chapman, Professor of Climate Resilience at the University worked with Alta Innovations, the University’s technology transfer company, to transform the concept into a reality.

His new technology, called AutumnSense, uses low-cost sensors to continuously measure the level of moisture on the railway line at potentially thousands of sites across the network.  By linking this data with a leaf-fall forecast, operators can identify where and when the risk is greatest.  This allows the precise and efficient use of automated treatment trains, which can clear the lines before the morning rush hour starts.  His team are now testing the next element of the solution which is a low-cost method to count the number of leaves remaining on the trees.

Professor Chapman’s team had previously developed low-cost devices that are fitted to lamp-posts, and transmit data on road surface temperatures, to show precisely where road gritting is needed, and where it isn’t.  The road technology, called WinterSense, is currently being tested by commercial partners and is expected to be in mass production by the end of this winter.  

Chapman is marketing AutumnSense and WinterSense through AltaSense, an operating division of Alta Innovations, and hopes to incorporate by autumn 2017.

Related Content

  • Smart Spanish city trials cell-based traffic management
    November 7, 2013
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.
  • Workzone safety can be economically viable
    October 24, 2014
    David Crawford looks how workzone safety can be ‘economically viable’. Highway maintenance is one of the most dangerous construction industry occupations in Europe. Research from The Netherlands on fatal crashes indicates that the risk facing road workzone operatives is ‘significantly higher’ than that for the general construction workforce. A survey carried out by the Highways Agency, which runs the UK’s motorway and trunk road network, has suggested that 20% of road workers have suffered injuries from pa
  • Digital Light Processing transforms travel information
    July 19, 2012
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.
  • Huawei develops the next generation of wireless communications
    October 25, 2024
    Huawei has developed and already deployed high-integrity and richly featured cellular communications solutions for the railway sector which are based on the new FRMCS standard and 4-5G technology