Skip to main content

Researchers develop remote traffic pollution detection system

A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions. According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather c
September 19, 2013 Read time: 2 mins
A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions.

According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather conditions. With this information, the impact of traffic on the environment can be analysed and road safety can be improved. The prototype is based on the modification of an infrared multispectral image camera with interferential filters and works in a similar way to a radar, although in this case it detects excess pollutants from each vehicle, say the researchers, who work within the framework of the INNPACTO project, led by Technet and employing researchers from CIEMAT, Tevaseñal and the Universidad Carlos III de Madrid (UC3M).

Approximately five percent of vehicles are responsible for more than 90 per cent of toxic emissions. With this system, it can be determined which pollute more and policies that facilitate their identification can be created. With this, point out the scientists, traffic emissions (CO2, CO, NOx, HC, PM) would be reduced and energy efficiency would increase, given that a decrease of emissions implies less consumption. In addition, measures for optimising consumption and emissions could be adopted, like varying speed limits on high capacity roads that enter and exit big cities.

According to its creators, the device is the only prototype on the market capable of measuring the emissions of each vehicle on a high capacity.

Related Content

  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • Hard data supports traffic monitoring
    April 30, 2024
    A collaboration between AGD Systems and North Line Canada has demonstrated the value of traffic experts putting their heads together to improve pedestrian safety
  • Bristol’s buses trial CycleEye detection system
    July 7, 2017
    Fusion Processing’s Jim Hutchinson looks at a two-year trial of the company’s cyclist detection system. Is cycling in a city dangerous? Well, that depends where you are and how you view statistics. Malmö is far more bike-friendly than Mumbai and the risk can either be perceived as small - one death per 29 million miles cycled in the UK in 2013 - or large - that equated to 109 deaths in the same year. Whatever your personal take on the data, the effect of these accidents can be felt indirectly too. News of c
  • SPONSORED CONTENT: Using AI to achieve real traffic intelligence
    June 3, 2020
    The application of artificial intelligence has the potential to transform the performance of vision-based systems used for a wide and growing set of applications. These include vehicle presence detection and identification, count and classification, and enforcement, explains Roy Czinku of International Road Dynamics