Skip to main content

Researchers develop remote traffic pollution detection system

A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions. According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather c
September 19, 2013 Read time: 2 mins
A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions.

According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather conditions. With this information, the impact of traffic on the environment can be analysed and road safety can be improved. The prototype is based on the modification of an infrared multispectral image camera with interferential filters and works in a similar way to a radar, although in this case it detects excess pollutants from each vehicle, say the researchers, who work within the framework of the INNPACTO project, led by Technet and employing researchers from CIEMAT, Tevaseñal and the Universidad Carlos III de Madrid (UC3M).

Approximately five percent of vehicles are responsible for more than 90 per cent of toxic emissions. With this system, it can be determined which pollute more and policies that facilitate their identification can be created. With this, point out the scientists, traffic emissions (CO2, CO, NOx, HC, PM) would be reduced and energy efficiency would increase, given that a decrease of emissions implies less consumption. In addition, measures for optimising consumption and emissions could be adopted, like varying speed limits on high capacity roads that enter and exit big cities.

According to its creators, the device is the only prototype on the market capable of measuring the emissions of each vehicle on a high capacity.

Related Content

  • Trials show fuel savings with connected vehicle technology
    December 16, 2015
    American and European trials point to fuel and emissions reductions. A trial by University of California-Riverside (UC-Riverside) has shown connected vehicle technology has the potential to reduce fuel consumption (and therefore emissions) by up to 18% compared with an uninformed driver.
  • What will MaaS look like in 2031?
    October 25, 2021
    The next decade will see the humble trip planning app transformed by machine learning and AI, revolutionising the way we move around and interact with each other, says John Nuutinen of SkedGo
  • How digital navigation is key to managing congestion
    March 24, 2023
    Satnav – not costly civil engineering projects – might point us towards better management of congested road networks, argues David Metz of University College London
  • AVs in the Netherlands? Don't forget the bikes
    June 11, 2019
    The Netherlands’ famous love of bicycles could be a problem when it comes to the deployment of autonomous vehicles there. And there might be other obstacles, finds Ben Spencer Of all the countries on the planet, the Netherlands is most ready to start deploying autonomous vehicles (AVs), according to a survey by KPMG earlier this year. On the face of it, this is good news: coming first out of 25 countries listed in the Autonomous Vehicles Readiness Index (AVRI) for the second consecutive year puts the Du