Skip to main content

Researchers develop remote traffic pollution detection system

A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions. According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather c
September 19, 2013 Read time: 2 mins
A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions.

According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather conditions. With this information, the impact of traffic on the environment can be analysed and road safety can be improved. The prototype is based on the modification of an infrared multispectral image camera with interferential filters and works in a similar way to a radar, although in this case it detects excess pollutants from each vehicle, say the researchers, who work within the framework of the INNPACTO project, led by Technet and employing researchers from CIEMAT, Tevaseñal and the Universidad Carlos III de Madrid (UC3M).

Approximately five percent of vehicles are responsible for more than 90 per cent of toxic emissions. With this system, it can be determined which pollute more and policies that facilitate their identification can be created. With this, point out the scientists, traffic emissions (CO2, CO, NOx, HC, PM) would be reduced and energy efficiency would increase, given that a decrease of emissions implies less consumption. In addition, measures for optimising consumption and emissions could be adopted, like varying speed limits on high capacity roads that enter and exit big cities.

According to its creators, the device is the only prototype on the market capable of measuring the emissions of each vehicle on a high capacity.

Related Content

  • TRL to lead project to encourage wider adoption of plug-in vehicles
    September 11, 2015
    The Energy Technologies Institute (ETI) has appointed TRL, the UK’s Transport Research Laboratory, to lead its Consumers, Vehicles and Energy Integration (CVEI) project. The US$8 million project will examine how the UK energy system needs to adapt in order to accommodate and encourage greater adoption of plug-in hybrid and battery electric vehicles. The project aims to understand the required changes to existing infrastructure, as well as consumer response to a wider introduction of plug-in hybrid and el
  • Ford Research looking to help drivers manage stressful situations on the road
    June 28, 2012
    Engineers in the Ford Research and Innovation labs are developing ways to help the driver stay focused in busy situations by intelligently managing incoming communications. Data from the sensing systems of driver-assist technologies can be used to determine the amount of external demand and workload upon a driver at any given time including traffic and road conditions. In addition, Ford continues its health and wellness research with the development of a biometric seat, seat belt and steering wheel that can
  • Microgrids & the new power generation
    August 31, 2021
    Public transportation agencies are turning to microgrids to provide critical resilience in the event of local and regional power interruptions. Gordon Feller looks at projects in Maryland, New Jersey and Massachusetts
  • Lindsay innovates with remote asset monitoring
    April 17, 2024
    Lindsay is inviting visitors to Intertraffic to reimagine roadside safety and sustainability through remote asset monitoring.