Skip to main content

Researchers develop remote traffic pollution detection system

A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions. According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather c
September 19, 2013 Read time: 2 mins
A group of research centres and companies in Madrid has created what is said to be the first infrared and remote system able to detect pollutants from cars on highways up to three lanes. The goal is to be able to conduct a global test of automobile emissions.

According to the researchers, the prototype, which is ready to be marketed, can make an intelligent measurement of highway traffic by collecting real-time data on traffic density, emissions and consumption associated with each vehicle, and weather conditions. With this information, the impact of traffic on the environment can be analysed and road safety can be improved. The prototype is based on the modification of an infrared multispectral image camera with interferential filters and works in a similar way to a radar, although in this case it detects excess pollutants from each vehicle, say the researchers, who work within the framework of the INNPACTO project, led by Technet and employing researchers from CIEMAT, Tevaseñal and the Universidad Carlos III de Madrid (UC3M).

Approximately five percent of vehicles are responsible for more than 90 per cent of toxic emissions. With this system, it can be determined which pollute more and policies that facilitate their identification can be created. With this, point out the scientists, traffic emissions (CO2, CO, NOx, HC, PM) would be reduced and energy efficiency would increase, given that a decrease of emissions implies less consumption. In addition, measures for optimising consumption and emissions could be adopted, like varying speed limits on high capacity roads that enter and exit big cities.

According to its creators, the device is the only prototype on the market capable of measuring the emissions of each vehicle on a high capacity.

Related Content

  • EIT Mobility’s A-Z of Uvar
    January 31, 2023
    Well-implemented vehicle mobility schemes offer cities quick ways to improve the quality of urban life - and now EIT Mobility has written a guide to doing so. Andrew Stone has a read…
  • Smoothing the path to reducing traffic pollution
    October 22, 2014
    David Crawford reviews a new approach to traffic smoothing. A key objective for the Californian city of Bakersfield’s upgraded traffic operations centre (TOC), which opened in June 2014, is to help improve living conditions in a region with one of the worst air quality problems in the US. The TOC is speeding up the smoothing of traffic flows by delivering faster and better-informed traffic signal retiming and synchronisation.
  • UK's Hindhead tunnel pushes the boundaries of traffic management
    January 23, 2012
    The new Hindhead Tunnel is the first in the UK to use radar-based incident detection. Paul Arnold, project manager with the Highways Agency, talks about the project. The comparatively remote location of the A3 Hindhead Tunnel has resulted in it becoming one of the most sophisticated in the UK in terms of monitoring and control systems, according to Paul Arnold, project manager for the Highways Agency (HA), which manages strategic roads in England and Wales. It is the first tunnel in the UK to use radar for
  • Will driverless cars increase reliance on roads?
    February 29, 2016
    Researchers warn that driverless vehicles could intensify car use, reducing or even eliminating promised energy savings and environmental benefits. Development of autonomous driving systems has accelerated rapidly since the unveiling of Google’s driverless car in 2012, and energy efficiency due to improved traffic flow has been touted as one of the technology’s key advantages. However, new research by scientists from the University of Leeds, University of Washington and Oak Ridge National Laboratory,