Skip to main content

MnDOT to pilot radar system for traffic monitoring

The US’s Federal Communications Commission (FCC) has given approval to the Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94. The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location. The objective is to
April 15, 2015 Read time: 2 mins
The US’s 2115 Federal Communications Commission (FCC) has given approval to the 2103 Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94.

The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location.

The objective is to gather accurate traffic and congestion information from the trial, with the collected information to be provided to necessary staff for emergency situations. The information is also to be stored to provide congestion and incident metrics. As a side benefit, the proposed system can also detect lane changes and manoeuvres, helping identify driver behaviour.

The proposal has been accepted by MnDOT in conjunction with its partner 3525 AECOM, a consultant and technical services partner on the project, and RhiZone, a local innovation partner.

The ultimate goal is to perform traffic data collection activities using the 360 degree radar, test the accuracy of the devices, and provide a detailed summary of traffic data and driver behaviour at the selected field site, which is located on I-94, just east of the Lowry Hill Tunnel near the I-35W overpass.

The system will use a radar unit provided by 819 Navtech Radar to gather real-time traffic data from the site, and software installed at the MnDOT Regional Traffic Monitoring Center (RTMC) will detect traffic incidents based on analysis of the traffic data collected.

The AECOM Team will be responsible for deployment of the system, data collection, monitoring and reporting. The next steps in the pilot project include producing the Systems Engineering documentation to guide design and deployment activities, and to deploy the radar system for six months of operation, beginning in spring 2015.

Related Content

  • Cost benefit: just $25 boosts pedestrian safety in Florida
    April 29, 2019
    A relatively straightforward change to the way that pedestrians cross the street in a Florida city has made a significant safety improvement. And what’s more, it was cheap, finds David Crawford Installing a lead pedestrian interval (LPI) system at 25 central business district signalised intersections in the Florida city of Lakeland has cut numbers of incidents involving pedestrians by some 60% - at a cost of US$25 for 30 minutes' work, according to traffic operations manager Angelo Rao.
  • Rekor patents to boost traffic analystics
    March 4, 2025
    Tech allows agencies to 'predict, manage and mitigate traffic issues in real time'
  • Houston Radar to feature SpeedLane Pro and Tetryon solutions
    September 16, 2021
    US-based Houston Radar, a leading supplier of Doppler and FMCW radars for the traffic industry with customers in over 55 countries, will feature three major product innovations – SpeedLane Pro, Tetryon traffic cloud server, Armadillo Tracker and the Armadillo Crossfire
  • Ford Research looking to help drivers manage stressful situations on the road
    June 28, 2012
    Engineers in the Ford Research and Innovation labs are developing ways to help the driver stay focused in busy situations by intelligently managing incoming communications. Data from the sensing systems of driver-assist technologies can be used to determine the amount of external demand and workload upon a driver at any given time including traffic and road conditions. In addition, Ford continues its health and wellness research with the development of a biometric seat, seat belt and steering wheel that can