Skip to main content

MnDOT to pilot radar system for traffic monitoring

The US’s Federal Communications Commission (FCC) has given approval to the Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94. The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location. The objective is to
April 15, 2015 Read time: 2 mins
The US’s 2115 Federal Communications Commission (FCC) has given approval to the 2103 Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94.

The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location.

The objective is to gather accurate traffic and congestion information from the trial, with the collected information to be provided to necessary staff for emergency situations. The information is also to be stored to provide congestion and incident metrics. As a side benefit, the proposed system can also detect lane changes and manoeuvres, helping identify driver behaviour.

The proposal has been accepted by MnDOT in conjunction with its partner 3525 AECOM, a consultant and technical services partner on the project, and RhiZone, a local innovation partner.

The ultimate goal is to perform traffic data collection activities using the 360 degree radar, test the accuracy of the devices, and provide a detailed summary of traffic data and driver behaviour at the selected field site, which is located on I-94, just east of the Lowry Hill Tunnel near the I-35W overpass.

The system will use a radar unit provided by 819 Navtech Radar to gather real-time traffic data from the site, and software installed at the MnDOT Regional Traffic Monitoring Center (RTMC) will detect traffic incidents based on analysis of the traffic data collected.

The AECOM Team will be responsible for deployment of the system, data collection, monitoring and reporting. The next steps in the pilot project include producing the Systems Engineering documentation to guide design and deployment activities, and to deploy the radar system for six months of operation, beginning in spring 2015.

Related Content

  • May 31, 2013
    Assessing driver behaviour in work zones
    David Crawford looks at moves to increase throughput and safety in work zones.
  • July 7, 2017
    Bristol’s buses trial CycleEye detection system
    Fusion Processing’s Jim Hutchinson looks at a two-year trial of the company’s cyclist detection system. Is cycling in a city dangerous? Well, that depends where you are and how you view statistics. Malmö is far more bike-friendly than Mumbai and the risk can either be perceived as small - one death per 29 million miles cycled in the UK in 2013 - or large - that equated to 109 deaths in the same year. Whatever your personal take on the data, the effect of these accidents can be felt indirectly too. News of c
  • November 21, 2023
    Why keeping count is so important for traffic management
    Traffic engineers need to have multiple solutions in their toolbox to complete the most accurate and safe data collection programmes possible, explains Wes Guckert of The Traffic Group
  • May 31, 2016
    Upgrade for Minnesota’s tolling system data integration
    Following the US Department of Transportation’s Urban Partnership Agreement’s award to Minnesota DOT of the necessary funds to improve traffic flow on I-35W to and from downtown Minneapolis, Comtrol's DeviceMaster RTS 1-port was implemented to provide an Ethernet connection between all the toll tag readers along the I-35W corridor. The project consisted of retrofitting existing high-occupancy vehicle (HOV) lanes with technology that would enable single-occupant vehicles to use the HOV lanes. The toll lan