Skip to main content

MnDOT to pilot radar system for traffic monitoring

The US’s Federal Communications Commission (FCC) has given approval to the Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94. The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location. The objective is to
April 15, 2015 Read time: 2 mins
The US’s 2115 Federal Communications Commission (FCC) has given approval to the 2103 Minnesota Department of Transportation (MnDOT) to trial the use of a radar system to monitor and study traffic flow on Interstate 94.

The idea to use radar for traffic monitoring was originally submitted to the agency under its Innovative Idea Program last June. Currently, the proposal is to deploy a traffic detection system that can monitor six lanes of traffic and two overhead bridges from one location.

The objective is to gather accurate traffic and congestion information from the trial, with the collected information to be provided to necessary staff for emergency situations. The information is also to be stored to provide congestion and incident metrics. As a side benefit, the proposed system can also detect lane changes and manoeuvres, helping identify driver behaviour.

The proposal has been accepted by MnDOT in conjunction with its partner 3525 AECOM, a consultant and technical services partner on the project, and RhiZone, a local innovation partner.

The ultimate goal is to perform traffic data collection activities using the 360 degree radar, test the accuracy of the devices, and provide a detailed summary of traffic data and driver behaviour at the selected field site, which is located on I-94, just east of the Lowry Hill Tunnel near the I-35W overpass.

The system will use a radar unit provided by 819 Navtech Radar to gather real-time traffic data from the site, and software installed at the MnDOT Regional Traffic Monitoring Center (RTMC) will detect traffic incidents based on analysis of the traffic data collected.

The AECOM Team will be responsible for deployment of the system, data collection, monitoring and reporting. The next steps in the pilot project include producing the Systems Engineering documentation to guide design and deployment activities, and to deploy the radar system for six months of operation, beginning in spring 2015.

Related Content

  • March 15, 2019
    Cost Benefit: Utah traffic light scheme pays dividends
    A traffic signal control scheme in Utah is being taken up by other US authorities. David Crawford finds out how the Beehive State is leading the way in DoT and driver savings Growing numbers of US state departments of transportation (DoTs) and their road users are gaining real financial benefits from an advanced approach to traffic signal monitoring recently developed in Utah. Central to the system is its use of automated traffic signal performance measures (ATSPM) technology, brought in to improve th
  • July 17, 2012
    Development of cooperative driving applications for work zones
    The German AKTIV project is researching several cooperative driving applications for use in work zones. PTV's Michael Ortgiese details progress. The steep increases in traffic volumes predicted back in the early 1990s have unfortunately been proven to be more than accurate. In Germany, the AKTIV project continues to look into cooperative technologies' potential to reduce the impact of those increased traffic volumes and keep traffic moving despite limitations in infrastructure capacity.
  • May 26, 2016
    Viaduct deck renewal creates detour dilemma for MassDOT
    As the deck renewal of the I-91 viaduct in Springfield gets underway, David Crawford looks at the preparation and planning to ease the resulting traffic congestion. Accommodating the deck renewal of a 4km-long/four-lanes in each direction viaduct in the heart of Springfield (Massachusetts’ third largest city), has involved the state’s Department of Transportation (MassDOT) in a massive exercise in transport research and ITS-based area-wide preplanning and traffic management. Supporting a workzone of well ab
  • September 26, 2013
    Smart signal software ‘has potential for ICM’
    Software developed by researchers from the University of Minnesota for the Smart (Systematic Monitoring of Arterial Road and Traffic Signals) signal system automatically collects and processes data from traffic signal controllers at multiple intersections. It then creates performance measures, including information on the times and locations congestion occurs on a roadway. A new version of the software has been deployed at more than fifty intersections managed by the Minnesota Department of Transportatio