Skip to main content

Introducing Reno’s new multi-function loop detector

The latest multi-function inductive loop vehicle detectors from intelligent transportation systems supplier Reno A&E are designed to reliably detect all vehicles, as well as differentiating cycles from all other vehicles. The Model C-1101-B and C-1201-B detectors are available in 170/2070, NEMA TS1/TS2, ITS and ATC cabinet configurations. The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency.
August 2, 2013 Read time: 2 mins
The latest multi-function inductive loop vehicle detectors from intelligent transportation systems supplier Reno A&E are designed to reliably detect all vehicles, as well as differentiating cycles from all other vehicles.

The Model C-1101-B and C-1201-B detectors are available in 170/2070, NEMA TS1/TS2, ITS and ATC cabinet configurations.

The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency. 

Additional passage time for bicycles can be provided by either the loop detector or the controller.  Cycles receive additional green time for safe passage through intersections, while minimum passage time for motorised vehicles is maintained.

The detectors provide two outputs per channel. The primary output provides ‘call’ outputs for all vehicles, including motorcycles and cycles. The primary output can be programmed for lane line ‘LL’ mode, which only outputs for cycles. The secondary output provides a single pulse for each bicycle. The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency.  This unique capability to identify bicycles from other vehicles allows the technician to program initial time and extension time in the detector for bicycles only, thus providing a safe passage time through intersections.

Related Content

  • Vehicle manufacturers and local authorities seek satnav solutions
    December 5, 2013
    The increasing capability of satellite navigation is helping vehicle manufacturers and local authorities as well as individual drivers and fleets. In comparison to the physical ITS infrastructure in towns and cities and on motorways and highways, satellite navigation (satnav) systems have come a long way in a short time. Many (if not the majority) individual drivers and fleets use or have access to a satnav and now the vehicle manufacturers and even local authorities are beginning to utilise satnav derived
  • Arup’s vision of urban mobility in 2050
    May 6, 2015
    Arup’s vision of the Future of Highways considers a wide range of factors that will impact on mobility towards the middle of the century. In its consideration of the Future of Highways through to 2050, international consultants Arup has taken a broad and pragmatic view of where society is heading and the effects that will have on the transport requirements. In terms of major drivers it not only cites
  • US 511 system, the future of traveller information?
    April 23, 2013
    What started out at the turn of the millenium as a simple dial-up travel information service has grown out of all recognition in the digital age. Pete Goldin surveys the development to date of the US 511 traveller information system. In a little over a decade, 511 has gone from its original intent – a collection of recorded messages accessible via phone for pre-trip planning – to a network of dynamic traveller information services provided by states and cities throughout the US, offering access to a wide v
  • C/AVs could mean cheaper roads
    October 28, 2019
    The safety benefits of C/AVs have long been promoted – but research suggests they should also contribute to cheaper roads. David Crawford investigates the potential benefits in infrastructure costs Building narrower freeway lanes to accommodate the enhanced route-tracking capabilities of connected and autonomous vehicles (C/AVs), running in platoon conditions, could result in cost savings of £0.5 million (€0.56 million or US$6.5 million) for every km of road length built. Such benefits could be secur