Skip to main content

Introducing Reno’s new multi-function loop detector

The latest multi-function inductive loop vehicle detectors from intelligent transportation systems supplier Reno A&E are designed to reliably detect all vehicles, as well as differentiating cycles from all other vehicles. The Model C-1101-B and C-1201-B detectors are available in 170/2070, NEMA TS1/TS2, ITS and ATC cabinet configurations. The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency.
August 2, 2013 Read time: 2 mins
The latest multi-function inductive loop vehicle detectors from intelligent transportation systems supplier Reno A&E are designed to reliably detect all vehicles, as well as differentiating cycles from all other vehicles.

The Model C-1101-B and C-1201-B detectors are available in 170/2070, NEMA TS1/TS2, ITS and ATC cabinet configurations.

The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency. 

Additional passage time for bicycles can be provided by either the loop detector or the controller.  Cycles receive additional green time for safe passage through intersections, while minimum passage time for motorised vehicles is maintained.

The detectors provide two outputs per channel. The primary output provides ‘call’ outputs for all vehicles, including motorcycles and cycles. The primary output can be programmed for lane line ‘LL’ mode, which only outputs for cycles. The secondary output provides a single pulse for each bicycle. The company claims both models allow the traffic engineer to detect and provide safe passage time for cycles without compromising the intersection’s operating efficiency.  This unique capability to identify bicycles from other vehicles allows the technician to program initial time and extension time in the detector for bicycles only, thus providing a safe passage time through intersections.

Related Content

  • TRL answer key questions on urban traffic control
    March 21, 2014
    PC-based urban traffic control (UTC) continues to grow. Gavin Jackman, Head of Traffic and Software at TRL, looks forward. 1. PC-based urban traffic control is now very well established throughout the world. What have been the most significant developments or new features that have become available over the last two years? That’s a really interesting question because, from a software perspective, a few things are noticeable. Firstly, there are more players on the market – TRL’s Transyt Online, Imtech’s Imf
  • Road space utilisation improves travel times, reduces costs
    February 1, 2012
    For major road works schemes, necessary lane closures are timed to minimise congestion, most frequently at night and on weekends when traffic is at its lightest. As a result, rigid timetables are used in planning, programming and implementing work. In the UK, to calculate the expected traffic demand through roads works, historic profiles from the loop-based MIDAS (Motorway Incident Detection Automatic Signalling) system were used. These provided a valuable indicator of anticipated traffic behaviour but were
  • The future car will be a robot-driven giant computer, says report
    October 14, 2013
    A newly published Frost & Sullivan video report, The Future of Mobility summarises the key factors which impact the way people will move from door to door in the future and which will add a new dimension to the mobility behaviour of human beings. The video report highlights trends impacting mobility, presents future mobility solutions like car sharing, and mobility apps, providing door to door one stop shop journeys, and discusses and compares what organisations within the mobility eco-system are doing to e
  • Harnessing the strengths of CMOS for ITS applications
    January 24, 2017
    Sony’s Arnaud Destruels explains the benefits of CMOS sensors for ITS applications. In the transport sector roadside, trackside and platform cameras were devices for viewing and assessing a situation while individual sensors did all the clever stuff like traffic counting, speed calculation, queue lengths, signal status and so on. Well, not any more.