Skip to main content

Fully autonomous vehicles ‘spur LiDAR sensors mass adoption’

Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite
January 26, 2017 Read time: 3 mins
Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite for automated passenger vehicles.

According to 2097 Frost & Sullivan’s latest report, Automotive LiDAR Market for ADAS and Automated Driving, short-range LiDAR for autonomic emergency braking (AEB) is predominant in Japan and Europe. North America prefers to use radar and camera-based AEB, while Korea has high penetration of sensor fusion AEB.

“Most original equipment manufacturers (OEMs) will use LiDAR as a complement to camera and radar until a robust sensing solution is achieved,” said Frost & Sullivan Intelligent Mobility senior analyst Anirudh Venkitaraman. “Consolidation in the market has led to the emergence of a few major players such as Ibeo-ZF, 84 Leddartech-8036 Valeo, Quanergy-Delphi, and ASC-Continental that will play a crucial role in technology development. This will enable cost-effective, solid-state LiDAR development for mass adoption post 2025.”

In the next four years, Frost & Sullivan believes there is a possibility of commoditisation of level-2 automation with volume OEMs, such as 278 Ford, 1684 Hyundai, and 948 General Motors, introducing the technology in some of their premium offerings.

Leading players have adopted a variety of roadmaps for LiDAR:

1731 BMW is initially expected to introduce the city and highway pilot features, along with fully automated parking by 2022 on the i-8, 7-Series, and i-5. 1685 Mercedes-Benz is expected to introduce a level-3 highway pilot and an improved parking feature with the E-Class in 2017. Commercialisation of level-3 features in Ford vehicles is expected in 2025 or later, General Motors wants level-4 automation with Cadillac by 2025. 1686 Toyota is advocating intelligent systems to aid drivers, but is hesitant on committing to a fully autonomous driving timeline

After introducing an automated vehicle with LiDAR, Google is expected to compete against top OEMs in the North American market

“Mechanical LiDARs will be the only LiDAR solution enabling automated driving applications until solid-state LiDARs become the standard closer to 2020,” noted Venkitaraman. “When deployed, solid-state LIDARs will be used for level-3 and level-4 autonomous driving features like lane keeping and highway auto pilot applications, forcing the phasing out of mechanical systems by 2025.”

For more information on companies in this article

Related Content

  • National funding cuts cause fragmentation of US ITS market
    February 1, 2012
    Paul Everett, Research Director with IMS Research, looks at how ITS deployment varies across the US and what this means in terms of market potential for systems manufacturers and suppliers At the end of 2010, the US will have a total resident population of close to 310 million, rising to an estimated 439 million by 2050.
  • V2V penetration in new vehicles to reach 62% by 2027
    March 20, 2013
    The latest research from ABI Research indicates that vehicle-to-vehicle technology based on Dedicated Short Range Communication (DSRC) using the IEEE 802.11p automotive W-Fi standard will gradually be introduced in new vehicles driven by mandates and/or automotive industry initiatives, resulting in a penetration rate of 61.8% by 2027. ABI Research VP and practice director, Dominique Bonte comments, “While in the US there is a real possibility for a DoT mandate depending on the outcome of the large scale V2X
  • Driving hydrogen fuel cell vehicles to market
    July 19, 2017
    An EU-funded project, with the support of the Fuel Cells and Hydrogen Joint undertaking (FCH JU), has installed hydrogen filling stations, tested prototype fuel cell vehicles and brought together car makers and infrastructure providers to push forward the commercial viability of this zero-emissions technology. Hydrogen fuel cell vehicles, which manufacturers aim to make commercially available from 2018, offer zero-emissions transport and function much like an electric vehicle. However, fuel cell vehicles mu
  • Allied Vision and TORC Robotics help blind driver ‘see’
    May 22, 2015
    TORC Robotics has partnered with the Robotics and Mechanisms Laboratory (RoMeLa) at the Virginia Polytechnic Institute and State University (Virginia Tech) with the aim of developing vehicles for the next generation of National Federation of the Blind (NFB) Blind Driver Challenge vehicles. The NFB developed the Blind Driver Challenge which calls upon developers and innovators to create interface technologies to allow those who are blind to drive a car independently. Held at the Daytona Speedway as a pre