Skip to main content

Fully autonomous vehicles ‘spur LiDAR sensors mass adoption’

Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite
January 26, 2017 Read time: 3 mins
Cost-effective, high-resolution light detection and ranging (LiDAR) sensors capable of long-range object detection will be necessary for high to fully-automated driving applications. Demand for 3D mapping and imaging, better overall performance, automated processing of graphic data gathering and self-sufficient sensor with best-in-class performance in low-visibility conditions are factors driving the development and adoption of LiDAR sensors within the advanced driver assistance systems (ADAS) sensor suite for automated passenger vehicles.

According to 2097 Frost & Sullivan’s latest report, Automotive LiDAR Market for ADAS and Automated Driving, short-range LiDAR for autonomic emergency braking (AEB) is predominant in Japan and Europe. North America prefers to use radar and camera-based AEB, while Korea has high penetration of sensor fusion AEB.

“Most original equipment manufacturers (OEMs) will use LiDAR as a complement to camera and radar until a robust sensing solution is achieved,” said Frost & Sullivan Intelligent Mobility senior analyst Anirudh Venkitaraman. “Consolidation in the market has led to the emergence of a few major players such as Ibeo-ZF, 84 Leddartech-8036 Valeo, Quanergy-Delphi, and ASC-Continental that will play a crucial role in technology development. This will enable cost-effective, solid-state LiDAR development for mass adoption post 2025.”

In the next four years, Frost & Sullivan believes there is a possibility of commoditisation of level-2 automation with volume OEMs, such as 278 Ford, 1684 Hyundai, and 948 General Motors, introducing the technology in some of their premium offerings.

Leading players have adopted a variety of roadmaps for LiDAR:

1731 BMW is initially expected to introduce the city and highway pilot features, along with fully automated parking by 2022 on the i-8, 7-Series, and i-5. 1685 Mercedes-Benz is expected to introduce a level-3 highway pilot and an improved parking feature with the E-Class in 2017. Commercialisation of level-3 features in Ford vehicles is expected in 2025 or later, General Motors wants level-4 automation with Cadillac by 2025. 1686 Toyota is advocating intelligent systems to aid drivers, but is hesitant on committing to a fully autonomous driving timeline

After introducing an automated vehicle with LiDAR, Google is expected to compete against top OEMs in the North American market

“Mechanical LiDARs will be the only LiDAR solution enabling automated driving applications until solid-state LiDARs become the standard closer to 2020,” noted Venkitaraman. “When deployed, solid-state LIDARs will be used for level-3 and level-4 autonomous driving features like lane keeping and highway auto pilot applications, forcing the phasing out of mechanical systems by 2025.”

For more information on companies in this article

Related Content

  • Here and CDOT to partner on US RoadX connected vehicle project
    January 12, 2016
    The Colorado Department of Transportation (CDOT) and mapping and location technology specialist Here are to partner in the first cellular network-based connected vehicle alert system in North America.
  • New ticket purchase methods expected to drive advance of US public transit
    April 2, 2015
    New analysis from Frost & Sullivan, Strategic Analysis of the US Automated Fare Collection Market in Rail and Urban Transit Systems, finds that the market earned revenues of US$324.5 million in 2014 and estimates this to reach US$634.8 million by 2021. The rising cost of fare management, coupled with the increasing presence of computing, sensors and connected devices, have made public transit systems more accessible to end users, thus boosting interest in automated fare collection (AFC) systems. With 33
  • Legalities of in-vehicle systems and cooperative infrastructures
    February 1, 2012
    Paul Laurenza of Dykema Gossett PLLC discusses the paths which lawmakers may go down on the route to making in-vehicle systems and cooperative infrastructures a reality. The question of whether or not to mandate in-vehicle systems for safety and other applications is a vexed one. There is a presumption on some parts that going down the road of forcing systems' fitment is somehow too domineering or restricting. Others would argue that it is the only realistic way of ensuring that systems achieve widespread d
  • Autonomous vehicles – saviour and threat, says report
    November 1, 2016
    A new report from IDTechEx Research notes that autonomous vehicles need no pilot, not even one in reserve. Many truly autonomous vehicles are unmanned mobile robots prowling everywhere from the ocean depths to nuclear power stations, the upper atmosphere and outer space. They create billion dollar businesses such as aircraft and airships aloft for five to ten years on sunshine alone carrying out surveillance or beaming the internet to the 4.5 billion people who lack it. Independence of energy and electri