Skip to main content

Klimator looks Ahead to winter weather

Swedish firm's software links with floating car data to accurately detect road conditions
By David Arminas September 15, 2022 Read time: 3 mins
Klimator can detect the road condition, in real time, 25m ahead of a vehicle (image courtesy Klimator)

Swedish software company Klimator has partnered with Lulea University of Technology and the Swedish Transport Administration (Trafikverket) to model road friction on roads during winter.

Klimator, based in Gothenburg, Sweden, provides software for predictive and detective road weather systems.

The project, with a contract value of around €120,000, will run for two and a half years using Klimator's Ahead, a sensor fusion software solution that combines a laser sensor and a camera to detect road conditions. Locally integrated, it can detect the road condition, in real-time, 25m ahead of the vehicle.

Ahead will combine with friction information from so-called floating car data (FCD) - typically, timestamped geo-localisation and speed data collected by moving vehicles.

For FCD collection, a participating vehicle acts as a moving sensor using an on-board GPS receiver or cellular phone.

The most common and widespread use of FCD is to determine traffic speed on the road network. Based on this data, traffic congestion can be identified, travel times calculated and traffic reports rapidly generated.

This is in contrast to stationary devices, such as traffic cameras, number plate recognition systems, and induction loops embedded in the roadway, since no additional hardware on the road network is necessary.

According to Klimator, the aim of the project is to address the problem with different frictions in different lanes over the same stretch of road, which mainly occurs during winter. As the difference in friction can be large over the same stretch of road, models need to be developed to enable the interpretation of FCD to demonstrate this.

This project is particularly important for the Swedish Transport Administration in order for the agency to monitor and follow-up winter road maintenance. The project's focus is, therefore, on developing a reliable interpretation of the friction estimate for each individual lane.

Ahead provides vehicle systems with information on prevailing road surface conditions, which increases the functionality, operability, and use of advanced driver support systems and autonomous driving technologies.
 
In June last year, Klimator signed a five-year agreement with Norwegian winter contractor Mesta, a government agency. The deal is for a step-by-step implementation of Klimator’s Road Status Information (RSI) software into Mesta's operations.

Klimator said at the time that the collaboration is part of Mesta’s plan to digitise and transform the company’s operations in winter road maintenance. 

RSI is Software as a Service for winter maintenance contractors to help them make fact-based decisions. The platform on which RSI is built collects and processes data from a variety of different sources and integrates this with Klimator's advanced climate models to provide high-resolution road forecast forecasts.

These forecasts enable winter contractors to make critical decisions about when, where and how to take action for snow removal and de-icing. In winter road maintenance, there is a great focus on prevention.

Klimator says RSI provides highly-accurate forecasts with a very high degree of detail which makes it easier for winter contractors to plan and streamline their work - and that it can contribute to cost savings of up to 30%, a reduced climate footprint through reduced salting and safer roads to travel on.

For more information on companies in this article

Related Content

  • The role of GIS in climate change resiliency
    May 29, 2014
    Climate change will pose global and local challenges and that includes risks to the transportation infrastructure. Climate change adaptation and resiliency has captured the attention of the transportation community for some time now. Because transportation infrastructure is often designed to last for 30, 50, or 100 years or even longer, transportation professionals are concerned not only about the impact on our existing investments, but also how to design more durable transportation systems for the future
  • Flir smart traffic management in Darmstadt
    October 20, 2015
    Part of a larger urban zone, the city of Darmstadt near Frankfurt, Germany, does not escape the problems of traffic congestion. In a bid to improve the situation, the city’s traffic authorities have installed more than 200 video detectors from Flir Systems, along with Flir’s video management system, Flux, which monitors the traffic streams coming from a wide variety of cameras. The city is also using various types of video sensors for vehicle, pedestrian and cycle detection, all of which are used to con
  • Weathering the elements: how weather affects the network
    July 29, 2013
    Weather-related problems can render cost-cutting counter productive, according to CommScope’s Philip Sorrells. When severe weather conditions make headlines every winter, motorists and travellers seem willing to accept the impact on the trains and roads and yet take for granted that the communications networks will continue uninterrupted. They often appear far more upset that the information system does not give them an update on road conditions, train services or bus arrival times than they are about the a
  • Technology advances improve enforcement
    July 26, 2012
    Across the board, technology is being brought to bear to improve the efficiency of enforcement. Bus lane monitoring, parking and controlled access have all benefited from systems introduced in recent months. While speed and red light infringements tend to attract the most attention, there remain several other areas of enforcement where automation can bring significant operational and efficiency benefits. Lane monitoring and access control also continue to benefit from technological development.