Skip to main content

City of Greenville adopts Wavetronix traffic sensor technology

The US City of Greenville has begun phasing in new vehicle detection technology at its traffic signals. The state-of-the-art traffic sensors are expected to provide numerous benefits to motorists including improved safety, cost savings, greater mobility and increased productivity. The city’s 115 vehicle-activated signalised intersections currently have more than 900 in-road sensors that detect the presence of vehicles. The loop detectors, which have been widely used throughout the US for more than four de
February 21, 2013 Read time: 3 mins
The US City of Greenville has begun phasing in new vehicle detection technology at its traffic signals.  The state-of-the-art traffic sensors are expected to provide numerous benefits to motorists including improved safety, cost savings, greater mobility and increased productivity.

The city’s 115 vehicle-activated signalised intersections currently have more than 900 in-road sensors that detect the presence of vehicles.  The loop detectors, which have been widely used throughout the US for more than four decades, need frequent maintenance and replacement; in Greenville, more than 50 loops fail or require replacement each year.  Replacing a loop can take a day or more and requires temporary lane closures that lead to traffic delays and reduced safety for motorists and workers.

Under a new plan, the city’s public works department will consider replacing failed detection loops with 148 Wavetronix SmartSensor technology provided by local intelligent transportation systems equipment vendor Transportation Equipment and Services.  “We instantly recognised that the technological, safety and cost-saving advantages offered by Wavetronix could be an excellent fit for the City of Greenville’s progressive approach to transportation solutions,” says transportation equipment and services sales consultant Mark Holland.

“There are many reasons why loops fail,” says Greenville city traffic engineer Richard DiCesare.  “Pavement can shift and affect the loops, especially on a downgrade. New construction on adjacent lots can easily take out the lead wire along with all the loops it connects.  And every time you need to mill and resurface a road, the loops typically need to be replaced.”

Instead of loops buried in the pavement, the Wavetronix solution relies on a single radar-emitting unit mounted above each intersection approach that detects vehicles using sixteen separate radar beams to achieve a 90-degree, 140-foot field of view in all weather and lighting conditions.

The Wavetronix technology can typically be installed at a comparable cost to a loop detection system and provides numerous additional benefits, including: eliminating the need for lane closures during the installation and maintenance of traffic sensors; eliminating traffic delays resulting from the installation and maintenance of traffic sensors; reducing long-term maintenance costs for traffic sensors; prevents traffic delays resulting from the failure of traffic detection loops; adds detection capabilities for bicyclists using traffic lanes; adds data collection and traffic count capabilities at signalised intersections to enhance decision making and support requests for supplemental state and federal funding.

“Especially in these economic times, we’re always looking for ways to do things better and more cost-effectively, and Wavetronix makes that possible,” says DiCesare.  “With Wavetronix SmartSensors we really are getting more for each taxpayer dollar by leveraging the additional safety, mobility, data-collection and time-saving benefits it provides.  If the costs and benefits of this technology remain the same, the eventual goal will be phasing out loop detection in the City of Greenville in favour of the newer, more advanced technology.”

Related Content

  • April 8, 2014
    Opening the closed-loop to realise ITS benefits
    Jim Leslie, manager of ITS applications engineering at the Econolite Group looks at practical steps in transitioning from closed-loop masters to a centralised ATMS. Not many years ago the standard method of coordinating signalised intersections in local areas was to install an on-street master – each of which monitored and controlled a limited number of signal controllers or intersections as a closed-loop system. And, to a certain extent, each closed-loop system was autonomous from others deployed by the ag
  • March 21, 2024
    Sensys will unveil FlexMag3 EZ-Out at ITS America 2024
    Sensys Networks will be demonstrating why it is one of the most innovative companies in the ITS sector, with the unveiling of a new traffic detection sensor, the EZ-Out FlexMag3, at ITS America 2024 in Phoenix. Building on the excellent durability and rapid deployment capability of FlexMag3, the ground-breaking EZ-Out system makes it possible to swap sensors in seconds.
  • August 20, 2024
    FlexMag3 EZ-Out redefines traffic detection installation and flexibility
    Sensys Networks will be demonstrating why they’re one of the most innovative companies in ITS, unveiling a new EZ-Out version of their latest generation traffic detection sensor, FlexMag3. Building on the unparalleled durability and rapid deployment capability of FlexMag3, the groundbreaking EZ-Out system makes it possible to swap sensors in seconds.
  • November 20, 2013
    Bluetooth and Wi-Fi offer new options for travel time measurements
    New trials show Bluetooth and Wi-Fi signals can be reliably used for measuring travel times and at a lower cost than an ANPR system, but which is the better proposition depends on many factors. Measuring travel times has traditionally relied automatic number plate (or licence plate) recognition (ANPR/ALPR) cameras capturing the progress of vehicles travelling along a pre-defined route. Such systems also have the benefit of being able to count passing traffic and have become a vital tool in dealing with c