Skip to main content

City of Greenville adopts Wavetronix traffic sensor technology

The US City of Greenville has begun phasing in new vehicle detection technology at its traffic signals. The state-of-the-art traffic sensors are expected to provide numerous benefits to motorists including improved safety, cost savings, greater mobility and increased productivity. The city’s 115 vehicle-activated signalised intersections currently have more than 900 in-road sensors that detect the presence of vehicles. The loop detectors, which have been widely used throughout the US for more than four de
February 21, 2013 Read time: 3 mins
The US City of Greenville has begun phasing in new vehicle detection technology at its traffic signals.  The state-of-the-art traffic sensors are expected to provide numerous benefits to motorists including improved safety, cost savings, greater mobility and increased productivity.

The city’s 115 vehicle-activated signalised intersections currently have more than 900 in-road sensors that detect the presence of vehicles.  The loop detectors, which have been widely used throughout the US for more than four decades, need frequent maintenance and replacement; in Greenville, more than 50 loops fail or require replacement each year.  Replacing a loop can take a day or more and requires temporary lane closures that lead to traffic delays and reduced safety for motorists and workers.

Under a new plan, the city’s public works department will consider replacing failed detection loops with 148 Wavetronix SmartSensor technology provided by local intelligent transportation systems equipment vendor Transportation Equipment and Services.  “We instantly recognised that the technological, safety and cost-saving advantages offered by Wavetronix could be an excellent fit for the City of Greenville’s progressive approach to transportation solutions,” says transportation equipment and services sales consultant Mark Holland.

“There are many reasons why loops fail,” says Greenville city traffic engineer Richard DiCesare.  “Pavement can shift and affect the loops, especially on a downgrade. New construction on adjacent lots can easily take out the lead wire along with all the loops it connects.  And every time you need to mill and resurface a road, the loops typically need to be replaced.”

Instead of loops buried in the pavement, the Wavetronix solution relies on a single radar-emitting unit mounted above each intersection approach that detects vehicles using sixteen separate radar beams to achieve a 90-degree, 140-foot field of view in all weather and lighting conditions.

The Wavetronix technology can typically be installed at a comparable cost to a loop detection system and provides numerous additional benefits, including: eliminating the need for lane closures during the installation and maintenance of traffic sensors; eliminating traffic delays resulting from the installation and maintenance of traffic sensors; reducing long-term maintenance costs for traffic sensors; prevents traffic delays resulting from the failure of traffic detection loops; adds detection capabilities for bicyclists using traffic lanes; adds data collection and traffic count capabilities at signalised intersections to enhance decision making and support requests for supplemental state and federal funding.

“Especially in these economic times, we’re always looking for ways to do things better and more cost-effectively, and Wavetronix makes that possible,” says DiCesare.  “With Wavetronix SmartSensors we really are getting more for each taxpayer dollar by leveraging the additional safety, mobility, data-collection and time-saving benefits it provides.  If the costs and benefits of this technology remain the same, the eventual goal will be phasing out loop detection in the City of Greenville in favour of the newer, more advanced technology.”

Related Content

  • April 10, 2014
    Cellint measures speed and travel time without roadside infrastructure
    Collecting speed and travel time data without using roadside infrastructure could offer new possibilities to cash-strapped road authorities. Streaming video may be useful for traffic controllers to monitor incidents and automatic number plate recognition may be required for enforcement, but neither are necessary for many ITS functions. For instance travel times, tailbacks, percentage of vehicles turning, origin and destination analysis can all be done using Bluetooth and/or WI-Fi sensors and without video o
  • February 26, 2013
    Aberdeen opts for wireless vehicle detection
    After several years’ experience of loop detector failures, primarily identified as being caused by damage from roadworks or degradation of aging road surfaces, Aberdeen City Council opted to use the Golden River M100 wireless detection system from Clearview Traffic. Each compact M100 sensor is typically installed in the middle of a traffic lane where it detects the presence and passage of vehicles and communicates this information wirelessly to the traffic signal controller via an access point and contact c
  • April 9, 2014
    ITS homes in on cycling safety
    A new generation of ITS equipment is helping road authorities get to grips with cycle safety – and not a moment too soon as Colin Sowman discovers. Cyclists - remember them? Apparently not. At least not according to the OECD 2013 report Cycling, Health and Safety which contains the statement: ‘Cyclists are often forgotten in the design of the road traffic system’. Looking through the statistics that exist (each country appears to compile them differently) it is not difficult to see how such a conclusion cou
  • December 9, 2014
    Smoothing intersection flow in the Netherlands
    Flir's ThermiCam thermal sensors have been installed at a major signalised intersection with the Utrechtseweg (N237) and Wilhelminalaan in Utrecht in the Netherlands In a bid to smooth traffic flows while also taking account of the presence of cyclists. ThermiCam is an integrated thermal camera and detector for vehicle and cycle presence detection and counting at signalised intersections and provides an alternative to in-road loops. The sensor detects heat energy generated by cyclists and motorists and