Skip to main content

Chicago launches urban sensing project

The first phase of an urban sensing Array of Things project has begun in Chicago with the installation of the first of an eventual 500 nodes on city streets. The sensors will collect data on air quality, climate, traffic and other urban features, kicking off a partnership between the University of Chicago, Argonne National Laboratory and the City of Chicago to better understand, serve and improve cities.
September 1, 2016 Read time: 2 mins

The first phase of an urban sensing Array of Things project has begun in Chicago with the installation of the first of an eventual 500 nodes on city streets. The sensors will collect data on air quality, climate, traffic and other urban features, kicking off a partnership between the University of Chicago, 5041 Argonne National Laboratory and the City of Chicago to better understand, serve and improve cities.

Array of Things is designed as a ‘fitness tracker’ for the city, collecting new streams of data on Chicago’s environment, infrastructure, and activity. This hyper-local, open data can help researchers, city officials, and software developers study and address critical city challenges, such as preventing urban flooding, improving traffic safety and air quality, and assessing the nature and impact of climate change.

In the first phase of the project, 50 nodes will be installed in August and September on traffic light poles in The Loop, Pilsen, Logan Square and along Lake Michigan. These nodes will contain sensors for measuring air and surface temperature, barometric pressure, light, vibration, carbon monoxide, nitrogen dioxide, sulphur dioxide, ozone, and ambient sound intensity. Two cameras will collect data on vehicle and foot traffic, standing water, sky colour and cloud cover.

Initial node locations and data applications were determined based on interactions with community organisations and research groups. Some nodes will contain sensors for tracking air quality and its relationship with asthma and other diseases, while others will study pedestrian and vehicle flow and traffic safety or measure features related to urban weather and climate change.

Data collected by Array of Things nodes will be open, free and available to the public, researchers, and developers. After a brief period of testing and calibration, the project will publish data through the City of Chicago Data Portal, open data platform Plenar.io, and via application programming interfaces (APIs). As specified by the Array of Things privacy and governance policies, no personally identifiable information will be stored or released by sensor nodes.

For more information on companies in this article

Related Content

  • New LowCVP report: The Journey of the Green Bus
    February 12, 2016
    A new report by the LowCVP for Greener Journeys describes The Journey of the Green Bus; how innovation and supportive policy over the last decade and more has transformed the bus sector from being a part of the problem to being an important part of the solution to poor urban air quality as well as contributing to tackling climate change.
  • Metro focuses on pavement data 
    December 2, 2021
    Washington State agency says CommonPaths supports pedestrian and accessibility projects 
  • Lufft’s all-in-one weather sensor
    October 15, 2018
    Lufft says its new all-in-one weather sensor has a temperature accuracy of 1% and can be used to monitor smart city and smart home applications. The device is expected to cover ten measurement parameters simultaneously. The WS10 sensor comes with an integrated compass which enables a direction-independent installation to help it suitable for building management systems, the company adds. WS10 measures temperature, relative humidity, air pressure, wind speed and wind direction, precipitation intensity and
  • Inland waterways can de-stress city roads
    March 17, 2016
    David Crawford looks at an under-utilised solution for city-centre deliveries. The use of rivers and canals for moving freight is a well-established mode in North Western Europe, where it can take advantage of an intensively developed network. In the Netherlands, 40% of the total volume of goods transported internally goes by water; the figure for Flanders (the neighbouring Dutch-speaking region of Belgium) is 11.5%.