Skip to main content

Chicago launches urban sensing project

The first phase of an urban sensing Array of Things project has begun in Chicago with the installation of the first of an eventual 500 nodes on city streets. The sensors will collect data on air quality, climate, traffic and other urban features, kicking off a partnership between the University of Chicago, Argonne National Laboratory and the City of Chicago to better understand, serve and improve cities.
September 1, 2016 Read time: 2 mins

The first phase of an urban sensing Array of Things project has begun in Chicago with the installation of the first of an eventual 500 nodes on city streets. The sensors will collect data on air quality, climate, traffic and other urban features, kicking off a partnership between the University of Chicago, 5041 Argonne National Laboratory and the City of Chicago to better understand, serve and improve cities.

Array of Things is designed as a ‘fitness tracker’ for the city, collecting new streams of data on Chicago’s environment, infrastructure, and activity. This hyper-local, open data can help researchers, city officials, and software developers study and address critical city challenges, such as preventing urban flooding, improving traffic safety and air quality, and assessing the nature and impact of climate change.

In the first phase of the project, 50 nodes will be installed in August and September on traffic light poles in The Loop, Pilsen, Logan Square and along Lake Michigan. These nodes will contain sensors for measuring air and surface temperature, barometric pressure, light, vibration, carbon monoxide, nitrogen dioxide, sulphur dioxide, ozone, and ambient sound intensity. Two cameras will collect data on vehicle and foot traffic, standing water, sky colour and cloud cover.

Initial node locations and data applications were determined based on interactions with community organisations and research groups. Some nodes will contain sensors for tracking air quality and its relationship with asthma and other diseases, while others will study pedestrian and vehicle flow and traffic safety or measure features related to urban weather and climate change.

Data collected by Array of Things nodes will be open, free and available to the public, researchers, and developers. After a brief period of testing and calibration, the project will publish data through the City of Chicago Data Portal, open data platform Plenar.io, and via application programming interfaces (APIs). As specified by the Array of Things privacy and governance policies, no personally identifiable information will be stored or released by sensor nodes.

For more information on companies in this article

Related Content

  • Continental launches new connected vehicle technologies
    August 19, 2016
    Continental will be presenting several examples of its new applications and services for handling performance, vehicle management, logistics, and automated driving at this year's International Motor Show Commercial Vehicles (IAA Commercial Vehicles) in Hanover. These include the ContiPressureCheck system which monitors the pressure and temperature of all tires consistently, even while driving, and the dynamic eHorizon, a sensor system that supplies vehicles with real-time information, which allows the h
  • Kerb your enthusiasm, warns Passport
    March 4, 2019
    Dynamic kerbside management is crucial if urban authorities are to address increasingly chaotic situations caused by the gig economy and mobility innovation, says Adam Warnes at Passport Demand for the kerbside is growing and changing and it’s no surprise when you consider the recent innovations within the mobility industry. For starters, there are new modes of transport, including ride-shares, electric vehicles (EVs), dockless cycles, last-mile consolidations and autonomous vehicles (AVs). Secondly, the
  • High-speed road assessment vehicle launches at Intertraffic
    February 8, 2016
    WDM, the UK’s leading manufacturer and provider of highway survey and monitoring equipment, will be exhibiting its RAV (road assessment vehicle) for the first time at Intertraffic Amsterdam. The RAV carries out high-speed data acquisition and recording of surface conditions, including measurement of radius of curvature, gradient and crossfall; the automatic recognition of surface cracking; plus geometric longitudinal profile, accurate at speeds down to 0kph.
  • Voi adds air quality sensor to V4 e-scooter
    February 8, 2021
    Data collected will be processed through micromobility company's IoT hardware