Skip to main content

Abu Dhabi installs Scoot

The Department of Transport (DoT) in Abu Dhabi has commenced work on a US$9 million adaptive traffic control central system project, which is expected to be completed by early 2015. The project will see the implementation of a new Scoot (Split Cycle Offset Optimisation Technique) adaptive traffic control system to improve traffic flow at the capital’s 125 main signalised junctions. Scoot, installed in more than 120 cities worldwide, is a tool for managing and controlling traffic signals in urban areas.
March 5, 2014 Read time: 2 mins
The Department of Transport (DoT) in Abu Dhabi has commenced work on a US$9 million adaptive traffic control central system project, which is expected to be completed by early 2015.

The project will see the implementation of a new Scoot (Split Cycle Offset Optimisation Technique) adaptive traffic control system to improve traffic flow at the capital’s 125 main signalised junctions.  Scoot, installed in more than 120 cities worldwide, is a tool for managing and controlling traffic signals in urban areas. It is an adaptive system that responds automatically to fluctuations in traffic flow through the use of in-road detectors.

Traffic signals in Abu Dhabi currently operate on fixed time, which is not ideal for easily managing traffic congestion or other unexpected events. Scoot is able to respond quickly to variations in traffic flows by reducing delays and queue lengths at junctions, using about 20 sensors at each intersection to monitor and report the volume of traffic. The system is also able to give priority to buses or emergency vehicles, which will enhance road safety and quick response to accidents and vehicle breakdowns.

“It is simply to have the most adaptive technology to manage the traffic network in the proper way,” said Salah Al Marzouqi, director of the integrated intelligent transport systems

The centre manages monitoring of the traffic flows on the road network, operation of the central traffic control system, and offers road service support patrols to prevent any congestion.

Related Content

  • Dynamic lane closures cuts time, cost and congestion on Motorway roadworks
    March 17, 2014
    A combination of technologies is leading to major congestion and cost reductions during roadworks on the UK’s motorway network. Innovative construction programme scheduling technology and the deployment of moveable barriers has achieved substantial savings of money and time on UK motorway roadworks managed by the Highways Agency (HA). This combination has set the scene for a new generation of road usage analysis tools. The HA’s objective was to reduce the congestion caused by lane closures during roa
  • Developing ‘next generation’ traffic control centre technology
    July 4, 2012
    The Rijkswaterstaat and Highways Agency have joined forces to investigate what the market can do to realise an idealistic vision for traffic control centre technology. Jon Masters reports One particular seminar session of the Intertraffic show in Amsterdam in March was notably over subscribed. So heavy was the press to attend that your author, making his way over late from another appointment, could not get in and found himself craning over other heads locked outside to overhear what was being said. The
  • Telegra tackle integrated corridor management
    March 29, 2017
    Coordination is the key to successful integrated corridor management, argues Telegra’s chief operating officer, Branko Glad. The Centre for Economics and Business Research (CEBR) has calculated that in 2013, traffic congestion cost American citizens $124 billion ($78 billion of wasted time and fuel and $45 billion in indirect losses). In 2030 this figure is predicted to rise to $186 billion.
  • Siemens adapts to London Fusion
    September 25, 2020
    New UTC system will be trialled in a 'living lab' at various intersections for TfL