Skip to main content

Abu Dhabi installs Scoot

The Department of Transport (DoT) in Abu Dhabi has commenced work on a US$9 million adaptive traffic control central system project, which is expected to be completed by early 2015. The project will see the implementation of a new Scoot (Split Cycle Offset Optimisation Technique) adaptive traffic control system to improve traffic flow at the capital’s 125 main signalised junctions. Scoot, installed in more than 120 cities worldwide, is a tool for managing and controlling traffic signals in urban areas.
March 5, 2014 Read time: 2 mins
The Department of Transport (DoT) in Abu Dhabi has commenced work on a US$9 million adaptive traffic control central system project, which is expected to be completed by early 2015.

The project will see the implementation of a new Scoot (Split Cycle Offset Optimisation Technique) adaptive traffic control system to improve traffic flow at the capital’s 125 main signalised junctions.  Scoot, installed in more than 120 cities worldwide, is a tool for managing and controlling traffic signals in urban areas. It is an adaptive system that responds automatically to fluctuations in traffic flow through the use of in-road detectors.

Traffic signals in Abu Dhabi currently operate on fixed time, which is not ideal for easily managing traffic congestion or other unexpected events. Scoot is able to respond quickly to variations in traffic flows by reducing delays and queue lengths at junctions, using about 20 sensors at each intersection to monitor and report the volume of traffic. The system is also able to give priority to buses or emergency vehicles, which will enhance road safety and quick response to accidents and vehicle breakdowns.

“It is simply to have the most adaptive technology to manage the traffic network in the proper way,” said Salah Al Marzouqi, director of the integrated intelligent transport systems

The centre manages monitoring of the traffic flows on the road network, operation of the central traffic control system, and offers road service support patrols to prevent any congestion.

Related Content

  • Standardised technology aids low cost wireless communication
    November 13, 2012
    In the UK, the necessary radio spectrum has been identified and standardised technology developed to allow cost effective wireless communication between cars, devices and other ‘machines’. This by Professor William Webb. A world free of traffic congestion, with intelligent systems directing vehicles and alerting drivers to free parking spaces may sound a far off fantasy to motorists stuck in seemingly endless queues on the outskirts of London. Yet this is a scenario not confined to the world of science fict
  • Communications redundancy increases VMS reliability
    December 17, 2014
    Hybrid communications to variable message signs increase resilience to natural disasters and enable deployment in remote areas, as Alan Allegretto explains. Variable Message Signs (VMSs) are a common sight and a well-proven means to improve public safety on our roads and highways. ITS professionals rank the VMS as second only to interoperable radios as the most important technology to improve effectiveness during emergency incidents and evacuations. Ironically, however, current systems suffer from one criti
  • Vehicle identification systems aid dynamic bus operations
    April 24, 2013
    David Crawford looks at a global trend towards more efficiency in less space As buses gain increased profile in the public transport mix needed for modal shift, attention is turning towards improving terminal layouts for more efficient handling of services and passengers. Locations, too, tend to be in central areas of cities, where sites are restricted and land values high. Enter the dynamic bus station, which uses modern vehicle identification systems to optimise space use and streamline service operation
  • Measuring vehicle lengths with a single loop - promising results
    July 27, 2012
    District 7 of Caltrans has been conducting trials to see whether the use of a single inductive loop to measure vehicle lengths and so identify heavy trucks is feasible. So far, the results have been very promising, according to Lead Transportation Engineer Steve Malkson. Between them, the adjoining ports of Los Angeles and Long Beach, the US's two biggest, cover some 10,700 acres (43km2) and 68 miles (109km) of waterfront.