Skip to main content

Wireless traffic detection system from Siemens offers an alternative

Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers. The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller. Battery-powered, wirelessly linked and smaller in size than traditional loop detecto
November 7, 2012 Read time: 2 mins
189 Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers.

The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller.
Battery-powered, wirelessly linked and smaller in size than traditional loop detectors, WiMag also lends itself to installation at remote locations as well as being less prone to damage by street works.

The WiMag system offers a cost effective detection system for stop line, vehicle actuation, SCOOT and MOVA applications; integration with their range of traffic controllers is seamless via a dedicated equipment rack. Available in two options, depending on the size of the installation, and with an inbuilt low-power wireless transmitter/receiver and a dedicated battery, each sensor can detect and transmit data to an associated access point or battery-powered repeater unit. Simply installed in the carriageway as a loop equivalent device, the in-road sensors may be located up to 300m from the host controller, using repeater units where necessary.

For more information on companies in this article

Related Content

  • Progressing work zone safety systems
    February 1, 2012
    David Crawford investigates progress in a key safety area - work zones. Highway construction zone safety is taken seriously enough in the US to merit a special spring National Work Zone Awareness Week, which in 2010 ran from 19-23 April. Headed by the US Department of Transportation's Federal Highway Administration (FHWA), this aims to reduce an annual toll of work zone deaths - 720 in 2008 (an average of one every 10 hours) with more than 40,000 traffic injuries (an average of one every 13 minutes).
  • Progressing work zone safety systems
    February 6, 2012
    David Crawford investigates progress in a key safety area - work zones
  • ITS homes in on cycling safety
    April 9, 2014
    A new generation of ITS equipment is helping road authorities get to grips with cycle safety – and not a moment too soon as Colin Sowman discovers. Cyclists - remember them? Apparently not. At least not according to the OECD 2013 report Cycling, Health and Safety which contains the statement: ‘Cyclists are often forgotten in the design of the road traffic system’. Looking through the statistics that exist (each country appears to compile them differently) it is not difficult to see how such a conclusion cou
  • San Antonio GPS-based BRT gets the green light
    December 20, 2012
    San Antonio, Texas, is launching a new GPS-based bus rapid transit system (BRT) that keeps San Antonio’s new VIA Primo bus fleet on-schedule with minimal impact on individual traffic flow. Siemens Road and City Mobility business has worked together with Trapeze Group to create a new transit signal priority (TSP) solution that they say is the first of its kind to use a ‘virtual’ GPS-based detection zone for transit vehicle traffic management without the need for physical detector equipment at the intersectio