Skip to main content

Wireless traffic detection system from Siemens offers an alternative

Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers. The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller. Battery-powered, wirelessly linked and smaller in size than traditional loop detecto
November 7, 2012 Read time: 2 mins
189 Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers.

The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller.
Battery-powered, wirelessly linked and smaller in size than traditional loop detectors, WiMag also lends itself to installation at remote locations as well as being less prone to damage by street works.

The WiMag system offers a cost effective detection system for stop line, vehicle actuation, SCOOT and MOVA applications; integration with their range of traffic controllers is seamless via a dedicated equipment rack. Available in two options, depending on the size of the installation, and with an inbuilt low-power wireless transmitter/receiver and a dedicated battery, each sensor can detect and transmit data to an associated access point or battery-powered repeater unit. Simply installed in the carriageway as a loop equivalent device, the in-road sensors may be located up to 300m from the host controller, using repeater units where necessary.

For more information on companies in this article

Related Content

  • Single system simplicity for smarter city transport
    February 23, 2017
    All encompassing, city-wide transport monitoring and control systems are beginning to make their way onto the market, as Colin Sowman hears. The futuristic vision of cities where everything is connected and operated with maximum efficiency by a gigantic computer remains a distant prospect but related sectors and services are beginning to coalesce: transport monitoring and control for instance.
  • New technology is changing the Weigh In Motion landscape
    June 5, 2014
    Exciting new weigh in motion solutions were showcased at Intertraffic. Guy Woodford reports For many years weigh-in-motion (WIM) has been used solely as a filtering mechanism to detect potentially overloaded vehicles, but introductions at Intertraffic may see that change. At the Intertraffic exhibition to unveil its Apollo range of British-manufactured axle weighbridges was Applied Traffic. The in-motion and static axle-by-axle weighing system offers slow speed and portable weighing solutions suitable for
  • EdgeVis removes bandwidth barriers to mobile streamed video
    October 26, 2017
    A new generation of video compression can lower transmission costs of data and make streaming from mobile and body-worn cameras a reality, as Colin Sowman discovers. Bandwidth limitations have long been the bottleneck restricting the expanded use of video streaming for ITS, monitoring and surveillance purposes. Recent years have seen this countered to some degree by the introduction of ‘edge processing’ whereby ANPR, incident detection and other image processing is moved into (or close to) the camera, so
  • Selecting the right camera for safety or security
    January 30, 2012
    Machine vision systems offer great variety of function and performance. Teledyne DALSA product manager Manuel Romero describes 10 key criteria to aid selection of advanced camera technology for safety or security applications. There are many ways in which machine vision systems can enhance safety and security in transportation, but the ultimate results will only be as good as the image produced. Success relies on correct selection of the camera of such systems, as the features and performance required vary