Skip to main content

Wireless traffic detection system from Siemens offers an alternative

Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers. The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller. Battery-powered, wirelessly linked and smaller in size than traditional loop detecto
November 7, 2012 Read time: 2 mins
189 Siemens WiMag wireless traffic detection, which is an alternative to conventional loop and radar traffic detection systems, uses magnetic disturbances to detect vehicles and low power wireless technology to transmit data to host controllers.

The company says WiMag can offer a more flexible solution than traditional loop detectors, particularly where detection is required at significant distances from the traffic controller.
Battery-powered, wirelessly linked and smaller in size than traditional loop detectors, WiMag also lends itself to installation at remote locations as well as being less prone to damage by street works.

The WiMag system offers a cost effective detection system for stop line, vehicle actuation, SCOOT and MOVA applications; integration with their range of traffic controllers is seamless via a dedicated equipment rack. Available in two options, depending on the size of the installation, and with an inbuilt low-power wireless transmitter/receiver and a dedicated battery, each sensor can detect and transmit data to an associated access point or battery-powered repeater unit. Simply installed in the carriageway as a loop equivalent device, the in-road sensors may be located up to 300m from the host controller, using repeater units where necessary.

For more information on companies in this article

Related Content

  • London Underground installs EV charge points
    August 28, 2013
    Siemens has completed the supply and installation of charging infrastructure for electric vehicles in twelve London Underground car parks across the capital for UK Power Network Services. The new network of sixty Siemens AC intelligent charge posts is fully integrated into Source London, the UK's largest electric vehicle membership scheme, with over 1,300 charge points. The charge points are supported by associated services including management, operation and maintenance and the supply of charging post m
  • Siemens EV charging ahead in Corby
    March 8, 2013
    Siemens is to provide the UK’s Electric Corby with its CP500A AC electric vehicle (EV) charging points at the first of ten locations in Corby, with a further eight locations being finalised. With the support of Corby Borough Council, the latest Siemens EV charging equipment will be installed over the coming weeks. According to Siemens, the network of Siemens EV charge points will help Corby strengthen its position as a leading edge location for ‘cleantech’ business investment, and bolster the wider Plugged
  • The control room revolution - LCD screens and IP technology
    July 17, 2012
    Coming soon to a screen near you: Brady O. Bruce and John Stark of Jupiter Systems discuss trends in control room technologies. Perhaps the single most important trend in the control room environment over the last 12-18 months has been the accelerated move towards the adoption of flat-screen Liquid Crystal Display (LCD) technology. Having made their presence felt in the home environment, where they continue to replace outdated cathode ray tube-based technology, LCDs have reached the point where their perfor
  • Video analytics enhances urban rail safety
    December 16, 2016
    David Crawford explores some promising innovations for North American commuters. North America is experiencing a surge in commuter rail and metro development. The US now has 75 light rail and metro networks in operation; and California, in particular, is actively exploring ways of developing the state’s existing passenger rail operations into a fully integrated system.