Skip to main content

C/AVs are target of NXP launch

TEF82xx radar transceiver enables 360-degree sensing for critical safety applications
By Adam Hill October 10, 2022 Read time: 2 mins
NXP's TEF82xx can support fully-autonomous driving (image: NXP)

NXP Semiconductors is producing its second-generation 77GHz RFCMOS radar transceivers for advanced driver assistance systems (ADAS) and autonomous driving.

The TEF82xx is the successor to the TEF810x, which has shipped tens of millions of units.

The device supports short-, medium- and long-range radar applications, including cascaded high-resolution imaging radar.

NXP says it enables 360-degree sensing for critical safety applications, including automated emergency braking, adaptive cruise control, blind-spot monitoring, cross-traffic alert and automated parking.

NXP says radar is becoming the key sensing modality for safety use-cases both for ADAS functions in passenger vehicles - and that the TEF82xx radar transceivers will also help enable fully-autonomous driving.

"The more demanding use-cases require higher RF performance to 'see' further, at distances beyond 300m, as well as at finer resolutions down to sub-degree level to accurately detect, separate and classify smaller objects," the manufacturer notes.

"NXP’s scalable family of S32R Radar processors, combined with the NXP TEF82xx RFCMOS radar transceivers, deliver the fine angular resolution, processing power, and ranges, required for production-ready imaging radar solutions."

The fully-integrated RFCMOS chip contains three transmitters, four receivers, ADC conversion, phase rotator and low-phase noise VCOs. The NXP TEF82xx also includes built-in safety monitors and external interface capability for MIPI-CSI2 and LVDS, and complies with ISO26262 and ASIL Level B standards. 

NXP says developers can build and optimise applications using the radar algorithm library offered by the automotive-grade Radar Software Development Kit (RSDK) without having to spend time manually fine-tuning accelerator software.

For more information on companies in this article

Related Content

  • Ansys and BMW develop AV simulation tool
    June 17, 2019
    Engineering company Ansys has joined forces with BMW to develop a simulation tool chain for developing autonomous vehicle (AV) technologies. Eric Bantegnie, vice president and general manager at Ansys, says the solution is designed to address “safety validation requirements for autonomous driving”. Ansys says simulation greatly reduces the need for physical testing which would require billions of miles of road tests across a range of driving conditions. The agreement is expected to help develop
  • Europe to become the fastest growing market for ADAS
    December 7, 2012
    The latest report from independent technical consultancy SBD finds that, despite their huge potential to save lives, Advanced Driver Assistance Systems (ADAS) have so far failed to contribute significantly to the drop in road fatalities, due primarily to stubbornly low penetration rates over the last decade. However, this is poised to change, as costs begin to fall, consumer interest continues to grow, and most importantly, independent vehicle safety assessor EuroNCAP includes some ADAS applications within
  • Smart Spanish city trials cell-based traffic management
    November 7, 2013
    David Crawford reports on an urban electronic nervous system. The northern Spanish city of Santander – historically a port - is now an emerging technology showcase attracting global attention as a prototype for a medium-sized smart city of the future. In a move to determine the optimal use of available data, it is creating a de-facto experimental laboratory for sensor and mobile phone-based urban traffic management and environmental monitoring innovations.
  • VTT's autonomous cars take to public roads
    May 18, 2017
    The autonomous cars developed by VTT Technical Research Centre of Finland are able to exchange information with each other and their driving environment. They are able to follow a pre-programmed route and avoid collisions with sudden obstacles without input from the driver. The cars currently require the lane markings or sides of the road to be visible. However, by 2020, VTT says the cars will be driving in more demanding conditions on roads covered in gravel and snow. The autonomous cars feature a thermal