Skip to main content

C/AVs are target of NXP launch

TEF82xx radar transceiver enables 360-degree sensing for critical safety applications
By Adam Hill October 10, 2022 Read time: 2 mins
NXP's TEF82xx can support fully-autonomous driving (image: NXP)

NXP Semiconductors is producing its second-generation 77GHz RFCMOS radar transceivers for advanced driver assistance systems (ADAS) and autonomous driving.

The TEF82xx is the successor to the TEF810x, which has shipped tens of millions of units.

The device supports short-, medium- and long-range radar applications, including cascaded high-resolution imaging radar.

NXP says it enables 360-degree sensing for critical safety applications, including automated emergency braking, adaptive cruise control, blind-spot monitoring, cross-traffic alert and automated parking.

NXP says radar is becoming the key sensing modality for safety use-cases both for ADAS functions in passenger vehicles - and that the TEF82xx radar transceivers will also help enable fully-autonomous driving.

"The more demanding use-cases require higher RF performance to 'see' further, at distances beyond 300m, as well as at finer resolutions down to sub-degree level to accurately detect, separate and classify smaller objects," the manufacturer notes.

"NXP’s scalable family of S32R Radar processors, combined with the NXP TEF82xx RFCMOS radar transceivers, deliver the fine angular resolution, processing power, and ranges, required for production-ready imaging radar solutions."

The fully-integrated RFCMOS chip contains three transmitters, four receivers, ADC conversion, phase rotator and low-phase noise VCOs. The NXP TEF82xx also includes built-in safety monitors and external interface capability for MIPI-CSI2 and LVDS, and complies with ISO26262 and ASIL Level B standards. 

NXP says developers can build and optimise applications using the radar algorithm library offered by the automotive-grade Radar Software Development Kit (RSDK) without having to spend time manually fine-tuning accelerator software.

For more information on companies in this article

Related Content

  • Electronic toll collection: Change is in the air
    November 7, 2024
    Trends in technology plus users’ comfort in adopting new advances indicate that the environment for a new electronic toll collection architecture is evolving. Hal Worrall considers what this might look like
  • Daimler’s double take sees machine vision move in-vehicle
    December 13, 2013
    Jason Barnes looks at Daimler’s Intelligent Drive programme to consider how machine vision has advanced the state of the art of vision-based in-vehicle systems. Traditionally, radar was the in-vehicle Driver Assistance System (DAS) technology of choice, particularly for applications such as adaptive cruise control and pre-crash warning generation. Although vision-based technology has made greater inroads more recently, it is not a case of ‘one sensor wins’. Radar and vision are complementary and redundancy
  • Humanising Autonomy aids VRU perception
    May 31, 2021
    Behaviour AI 'enables more accurate' VRU collision warnings for drivers than ADAS does
  • Q-free unveils new products
    June 18, 2014
    Q-Free has added two new high performance products to its product portfolio, both with low power consumption and long life use. The OBU615 is a Dedicated Short-Range Communication-based (DSRC) on-board unit (OBU) for applications such as electronic toll collection (ETC) and congestion charging, automatic vehicle identification (AVI), electronic registration identification (ERI), access control and parking. The device uses the same in-vehicle mounting as he OBU610, reducing logistic and operational costs