Skip to main content

Florida deploys BlueTOAD Spectra for traffic, travel time monitoring

TrafficCast International has completed the implementation of its latest generation Bluetooth signal sensor detector technology, BlueTOAD Spectra, in Florida. In December 2016, the Florida Department of Transportation's Traffic Engineering Research Laboratory (TERL) approved the new BlueTOAD Spectra dual-radio Bluetooth detection system for inclusion on the State's Approved Products List (APL). At the same time, several Florida local agencies also tested the BlueTOAD Spectra. Seminole County, a Blue
March 8, 2017 Read time: 2 mins
826 TrafficCast International has completed the implementation of its latest generation Bluetooth signal sensor detector technology, BlueTOAD 8083 Spectra, in Florida.

In December 2016, the 4503 Florida Department of Transportation's Traffic Engineering Research Laboratory (TERL) approved the new BlueTOAD Spectra dual-radio Bluetooth detection system for inclusion on the State's Approved Products List (APL). At the same time, several Florida local agencies also tested the BlueTOAD Spectra.
 
Seminole County, a BlueTOAD user since 2011, tested the new Spectra sensors as a possible solution for their need to monitor and collect data during non-peak hour traffic conditions.

Palm Beach County, a BlueTOAD user since 2012, tested the Spectra technology on one of their primary arterial roadways, stating that they achieved a match rate of 394 vehicles in one hour.

A new BlueTOAD user, Manatee County Florida, is currently deploying a 60-unit Spectra sensor system countywide for real-time travel-time monitoring, signal retiming and evacuation route planning.

BlueTOAD spectra traces anonymous Bluetooth signals from mobile devices in vehicles to determine travel times, road speeds and vehicle movements, even when a phone is paired to the vehicle rendering it ‘undiscoverable’. This increase in data provides the most accurate travel times on lower volume roads and during non-peak hours, while also providing for a much larger footprint for area-wide origin/destination studies.

For more information on companies in this article

Related Content

  • The weighty problem of truck routing enforcement
    March 17, 2015
    The growing impact of heavy commercial vehicles on urban and interurban highway infrastructures around the world is driving the need for reliable route access restriction and monitoring. The support role of enforcement is proving fertile ground for ITS development. Bridges are especially vulnerable – and critical in terms of travel delays. The US state of Oregon’s Department of Transportation (ODOT) operates what it claims is one of the country’s most aggressive truck route restriction enforcement programme
  • Funding shortfall for US Interstate upgrades
    May 11, 2012
    Andrew Bardin Williams investigates tolling on the federal Interstate system as maintenance and upgrade requirements increasingly outpace funding The I-95 corridor through North Carolina is one of the most heavy trafficked interstates in the US, seeing upwards of 46,000 vehicles per day in some stretches-and North Carolina’s Department of Transportation (NCDOT) estimates this number will to rise to 98,000 vehicles per day by 2040. Along with the rest of the federal interstate system, the North Carolina str
  • Traffic lights: There’s a better way ..
    July 9, 2014
    .. say researchers at Massachusetts Institute of Technology (MIT) who have developed a means of computing optimal timings for city stoplights that they say can significantly reduce drivers’ average travel times. Existing software for timing traffic signals has several limitations, says Carolina Osorio, an assistant professor of civil and environmental engineering at MIT and lead author of a forthcoming paper in the journal Transportation Science that describes the new system, based on a study of traffic
  • After two decades of research, ITS is getting into its stride
    June 4, 2015
    Colin Sowman gets the global view on how ITS has shaped the way we travel today and what will shape the way we travel tomorrow. Over the past two decades the scope and spread of intelligent transport systems has grown and diversified to encompass all modes of travel while at the same time integrating and consolidating. Two decades ago the idea of detecting cyclists or pedestrians may have been considered impossible and why would you want to do that anyway? Today cyclists can account for a significant propor