Skip to main content

Bluetooth sensors monitor travel times on Ontario’s busiest highway

Danish wireless technology company Blip Systems and its Canadian partner G4Apps have installed wireless sensors to help reduce traffic congestion on one of Ontario’s busiest highways, the Queen Elizabeth Way, which averages close to 200,000 vehicles per day. The Ontario Ministry of Transportation (MTO) is using Blip Systems’ combined Bluetooth and wi-fi sensors to verify travel time prediction algorithms. BlipTrack sensor are mounted on posts at strategic points in the road network and detect wireless
November 14, 2013 Read time: 1 min
Danish wireless technology company 3778 Blip Systems and its Canadian partner G4Apps have installed wireless sensors to help reduce traffic congestion on one of Ontario’s busiest highways, the Queen Elizabeth Way, which averages close to 200,000 vehicles per day.  
 
The Ontario Ministry of Transportation (MTO) is using Blip Systems’ combined Bluetooth and wi-fi sensors to verify travel time prediction algorithms. BlipTrack sensor are mounted on posts at strategic points in the road network and detect wireless signals from passing cars, recording the length of time taken to drive between locations.

The data enables MTO to detect changes in traffic patterns, better inform motorists and improve the capacity of existing roads.

For more information on companies in this article

Related Content

  • Active traffic management - challenges and benefits
    April 12, 2013
    Minnesota DoT has built one of the most intensive Active Traffic Management (ATM) systems on the road today. Like many ITS deployments, the state has gained benefits but also faces many challenges, as Pete Goldin reports. Smart Lanes is the brand name of Minnesota Department of Transportation’s (MnDoT) ATM system on I-35W in the Twin Cities Metro Area. The original system covered 16 miles of I-35W south of Minneapolis starting in 2009, and was extended by two miles in 2011. Additional ATM equipment was inst
  • Indra project aims to develop automated vehicle occupancy identification
    September 1, 2017
    Technology company Indra is leading the European R&D&i project BeCamGreen, which aims to develop a solution based on computer vision and big data, to contribute to reducing traffic, that enables the automated identification of vehicle types and their number of occupants, in real time and with precision.
  • Modelling could reduce traffic mayhem
    May 6, 2016
    A mathematical model that could significantly reduce traffic congestion by combining data from existing infrastructure, remote sensors, mobile devices and their communication systems has been developed by a research team from Australia’s Swinburne University of Technology. Swinburne‘s Congestion Breaker project utilises intelligent transport systems (ITS), a field of research that combines information and data from a range of sources for effective traffic control.
  • Intersection management, cooperative infrastructures - what next?
    February 1, 2012
    What do recent vehicle recalls mean for future cooperative infrastructures? Anthony Smith takes a look. As ITS industry stakeholders converge on Amsterdam for the 2010 Cooperative Mobility Showcase, an unprecedentedly wide range of technologies will be on display demonstrating what might be achievable in the future from innovations based on Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications.