Skip to main content

Seyond expands Lidar testing in Peachtree Corners

Firm will roll out more of its systems for real-world data collection in Georgia city
By David Arminas May 8, 2024 Read time: 2 mins
Georgia's mobility test-bed (© Curiosity Lab at Peachtree Corners)

Seyond, a global provider of image-grade Lidar, has expanded its cooperation with the US city of Peachtree Corners, a test-bed for 5G and connected vehicle technologies in Metro Atlanta, Georgia.

Curiosity Lab at Peachtree Corners - owned and operated by the city - is a 5G-enabled intelligent mobility and smart city living laboratory. Designed as a proving ground for Internet of Things, mobility and smart city emerging technologies, the centrepiece is a three-mile-long (5km) autonomous vehicle lane that uses cellular Vehicle to Everything (C-V2X).

Seyond’s Lidar, OmniVidi Perception Service software platform and Blue-Band Integrator AI provide real-time 3D mapping, with both vehicle and pedestrian object detection, are already being tested. These collect real-world data that can be used to implement traffic and vulnerable road user (VRU) signal solutions to make intersections safer and more efficient, while also protecting citizen privacy. With it, Peachtree Corners can adjust traffic signals, pedestrian crossing signals and intersection design to improve safety and efficiency.

“Curiosity Lab’s shared public domain available for testing, deployment and validation is one of the many characteristics that attracted us to collaborate with the organisation,” said Junwei Bao, co-founder and chief executive of Seyond.

“By collecting data from high-volume intersections across vehicular and pedestrian traffic, we will be able to improve the quality and reliability of detection results, which can help validate Intelligent Traffic Solution-based use cases,” said Bao. 

“Our technology can be used at a signal intersection but also across parking, large areas of pedestrian crossings and more. Curiosity Lab and Peachtree Corners will allow us to explore these use cases in a real-world environment as we continue to advance and validate our solutions for public use to improve safety for all.”

With a population of around 45,000, Peachtree Corners is one of the first planned US cities. It allowed one of the world’s first deployments of teleoperated e-scooters and now has fully-autonomous shuttles being used by residents. There is also a solar roadway and it is home to the largest electric vehicle fast-charging hub in the region.

Additional infrastructure includes intelligent traffic cameras and traffic signals, smart streetlights, the country’s first “IoT Central Control Room” implemented in a city and a 25,000-square-foot (2,325m²) technology incubator.

For more information on companies in this article

Related Content

  • How ITS helped Coachella get its groove back
    November 15, 2024
    California’s Coachella Valley attracts visitors to myriad music and sports events. But now an ambitious traffic management initiative aims to cut travel times and reduce emissions. Adam Hill talks to the engineers involved in the massive CV Sync project
  • Integrate systems to reduce roadside infrastructure
    January 27, 2012
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.
  • Asfinag makes case for ITS-G5 over 5G
    March 15, 2019
    Asfinag’s Manfred Harrer and Peter Meckel talk to Jason Barnes about the organisation’s first steps towards C-ITS deployments - and why ITS-G5 will be the underpinning standard For quite a number of years, it was assumed that the connectivity required for cooperative ITS (C-ITS) applications and autonomous vehicle (AV) operations would be catered for by a bespoke communications solution/protocol. This would provide localised ad hoc communication in a manner similar to Wi-Fi, and the dedicated bandwidth/n
  • Austrian Bike2CAV V2X project could mark turning point in cyclist safety
    May 10, 2023
    Research in Salzburg into C-ITS equips bikes with V2X tech to allow detection via ITS-G5