Skip to main content

Palm Beach trials Bluetooth traffic monitoring

As part of a growing effort to use technology to manage traffic on roads and highways without building more roads, for the last six months Florida’s Palm Beach County has been using Bluetooth readers to determine how long it takes motorists to travel along its corridors. "We're adding more capacity through technology rather than asphalt," said Dan Weisberg, Palm Beach County's traffic engineer. "We can't build ourselves out of congestion. We need to be smarter about what we have and manage it." In collabor
April 10, 2013 Read time: 2 mins
As part of a growing effort to use technology to manage traffic on roads and highways without building more roads, for the last six months Florida’s Palm Beach County has been using Bluetooth readers to determine how long it takes motorists to travel along its corridors.

"We're adding more capacity through technology rather than asphalt," said Dan Weisberg, Palm Beach County's traffic engineer. "We can't build ourselves out of congestion. We need to be smarter about what we have and manage it."

In collaboration with the 4503 Florida Department of Transportation (FDOT), Weisberg and his colleagues are conducting experiments on major east-west corridors in central Palm Beach County to help improve traffic flow whenever there's an accident or road construction. The experiments are currently limited to three roads in the county, but will be expanded to three others by September.

Based in Palm Beach County's intelligent transportation system (ITS) centre, a combination of traffic cameras, computer programs and devices that detect travel times and speed are giving traffic engineers quick access to data that allows them to make immediate changes to traffic signal timing to break up traffic jams.
Bluetooth wireless technology allows data swapping over short distances, but the readers pick up only a portion of the unique numerical address emitted by a Bluetooth device.

The readers are installed at various points along the corridors, and traffic engineers receiving data from the readers calculate average travel times between specific points.
If those travel times start to increase significantly, engineers at the traffic management can monitor the problem via signal-mounted cameras and make adjustments to the timing of the traffic signals to improve traffic flow.

The next part of the experiment is to install devices that monitor the speed and volume of traffic to allow traffic engineers to detect increases in traffic volume and make adjustments before the speed of traffic degrades significantly.

Most of Palm Beach County's traffic signals are connected by a fiber optic network with data flowing to the county's ITS centre. By the end of this year, 75 percent of the county's traffic signals will be online, as well as 110 traffic monitoring cameras.

For more information on companies in this article

Related Content

  • Blip Systems and Traffic Data Systems partner on traffic management
    November 18, 2014
    Danish IT company Blip Systems has appointed German traffic monitoring specialist Traffic Data Systems as its value added reseller for German-speaking countries. Traffic Data Systems is now offering BlipTrack, a non-intrusive solution that collects, analyses and visualises real-time data. BlipTrack sensors collect data from passing vehicles equipped with Bluetooth and wi-fi-enabled devices and calculate journey times and traffic flow. The solution is also able to analyse data from third-party data source
  • New Hampshire drivers get real time traffic information online
    January 3, 2013
    As part of its ongoing efforts to bring real-time traveller information to New Hampshire motorists, the New Hampshire Department of Transportation (NHDOT) has partnered with TrafficLand, a Virginia-based company, to provide real-time viewing access to the NHDOT's highway cameras. The public can now view traffic and road conditions from NHDOT cameras in ten regions of the state via the TrafficLand website, www.Trafficland.com. The camera locations are tied to interactive Google maps, which display travel sp
  • Siemens technology installed on UK connected vehicles project
    November 14, 2016
    Siemens’ Sapphire journey time measurement system for traffic monitoring using Bluetooth technology is being installed on three main corridors into the centre of Coventry as part of a new UK project to assess how connected vehicles interact on key corridors leading into the city centre from the national road network. Led by Coventry City Council, the intelligent variable message systems (iVMS) project will draw expertise from Coventry University’s Centre for Mobility and Transport in collaboration with
  • Opening the closed-loop to realise ITS benefits
    April 8, 2014
    Jim Leslie, manager of ITS applications engineering at the Econolite Group looks at practical steps in transitioning from closed-loop masters to a centralised ATMS. Not many years ago the standard method of coordinating signalised intersections in local areas was to install an on-street master – each of which monitored and controlled a limited number of signal controllers or intersections as a closed-loop system. And, to a certain extent, each closed-loop system was autonomous from others deployed by the ag