Skip to main content

Lidar technology wins big in China’s autonomous vehicle challenge

China’s fifth annual Future Challenge earlier this month pitted eleven unmanned intelligent vehicles against each other on a course designed to test their capabilities in suburban and urban road tests, over a 23-kilometre course. All of the first eight cars to finish were equipped with Velodyne’s 3D Lidar vision technology which provides active sensing for crash avoidance, driving automation and mobile road survey and mapping. Velodyne HDL-64E and HDL-32E sensors deliver 360-degree views of the car’s env
November 26, 2013 Read time: 2 mins
China’s fifth annual Future Challenge earlier this month pitted eleven unmanned intelligent vehicles against each other on a course designed to test their capabilities in suburban and urban road tests, over a 23-kilometre course.

All of the first eight cars to finish were equipped with Velodyne’s 3D Lidar vision technology which provides active sensing for crash avoidance, driving automation and mobile road survey and mapping. Velodyne HDL-64E and HDL-32E sensors deliver 360-degree views of the car’s environment, with real-time updates twenty times per second.

Cars on the course needed to demonstrate the ability to recognise light, eliminate human and vehicle interference, successfully detour around construction zones, turn around and come to a stop. All were also required to establish the ability to make a U-turn, accelerate and decelerate. Performance was graded on safety, smartness, smoothness and speed.

"This is simply a remarkable accomplishment," said Wolfgang Juchmann, PhD, 2259 Velodyne Lidar director of sales and marketing. "The Future Challenge course was nothing less than demanding throughout, with terrain and tests that demonstrated Lidar’s versatility and reliability in real time. And the fact that eight of eleven vehicles were so equipped stands as a huge vote of confidence in our technology."

For more information on companies in this article

Related Content

  • New system to prevent Hazchem and over-height vehicles entering tunnel
    August 20, 2015
    An impending move to free-flow charging prompted a search for automated dangerous goods identification and over-height detection systems at the Thames Crossing to the east of London. Manned toll booths are increasingly being consigned to history by the onslaught of all-electronic charging. However, a secondary function of the traditional manned plazas has been to prevent non-compliant vehicles using the facility or to tell a driver that that they need to use a specific lane or wait for an escort. Automating
  • The need to accelerate systems standardisation
    January 31, 2012
    While the US has achieved an appreciable level of success when it comes to implementation of standards-based systems at the urban and intersection control levels, the overall standards implementation effort is not progressing at anywhere near a level commensurate with the size of the country and its population, says Christy Peebles, business unit manager with Siemens Industry, Inc.'s Mobility Division. She attributes the situation to a number of factors: "There's a big element of 'Not Invented Here' syndro
  • Visteon to provide communications equipment for US vehicle-to-vehicle pilot program
    October 4, 2012
    Automotive supplier Visteon Corporation, in collaboration with Cohda Wireless, is providing vehicle-to-vehicle (V2V) communications equipment for the US Department of Transportation safety pilot program. The project potentially offers significant improvements in driver awareness including collision, hazardous road and curve speed warnings and traffic flow information. The safety pilot program is led by the University of Michigan Transportation Research Institute and will integrate 5.9 GHz dedicated short ra
  • US state of the art workzone safety
    January 25, 2012
    The Texas Transportation Institute's Jerry Ullman talks about the state of the art in work zone safety in the US. Work zones are places where, perhaps more than anywhere else on the road network, mobility and safety are strongly linked. Historically, field crews and contractors wanted vehicles in work zones to be moving as slowly as possible, assuming that made conditions the safest for work crews. We are though starting to see a shift in such thinking with the realisation that excessive delays or slow-down