David Crawford discovers how new systems and services are helping authorities in the US deal with a backlog of bridge maintenance.      
     
Every day 185 million vehicles – cars, trucks, school buses, emergency response units - cross one or more of America’s 55,710 ‘structurally compromised’ steel and concrete road bridges, the highest concentrations of which are in Iowa (nearly 5,000), Pennsylvania and Oklahoma. Nearly 2,000 of these crossings are located on interstate highways, according to the American Road and Transportation Builders Association’s recent analysis of the 
     
The overall tally of defective structures has fallen by around 0.5% a year since 2010, according to the US Federal Highway Authority, while the percentage of those in good condition has remained relatively steady. But, at current rates, it will take more than two decades to clear the backlog, according to the American Road and Transportation Builders Association’s chief economist, Dr Alison Premo Black.
     
She points out that almost 174,000 of all US road bridges (around 28%) are over 50 years old and have never undergone any major reconstruction. The scale of the issue underlines the continuing need for more effective means of prioritising the most serious cases for attention.
     
The problem lies in the historic inability of conventional non-destructive evaluation  tools, which are designed to test the integrity of materials without damaging them, to yield sufficiently location-specific results - underlining the need for new technologies. Among US knowledge centres responding to the crisis is the 
 
He cites governments like those in Hong Kong and Korea which are  mandating that new bridges have such monitoring technology installed  from the outset - giving such investment a higher priority than is  currently the case in the US. The problem, as always, when considering  retrofitting existing structures with networks of smart sensors, is the  cost.
     
Among other regional  efforts, 
     
The  UIC team trialled its approach on a scale model of the recently opened,  three-span Chongqing Dongshuimen bridge over China’s Yangtze River.  This showed that a telecoms grade, optical fibre-based strain sensor  identified damaged cable, irrespective of location.
     
The  same group is developing a bridge-specific weigh-in-motion approach to  gather safety-critical information. By deploying fibre-optic sensors,  the system measures the shear forces generated by traffic loads flowing  around structural supports. UIC’s Dr Farhad Ansari told ITS  International that the equipment can normally be non-intrusively  installed (and maintained from) underneath the bridge deck, thereby  avoiding the need for lane closures. A series of truck runs have  validated the concept.
     
Avoiding  closures for structural checks is also the aim of a US$1.4 million  research grant by the USDoT to a consortium led by Missouri University  of Science and Technology. It is developing a robotic arm for inspecting  and maintaining bridges either from the sides of the bridge or from the  air.
     
Mounted on unmanned  aerial vehicles (drones) or robots crawling along the sides of  structures, the arm will be fitted with sensors and microwave cameras  capable of detecting potential problems before they become serious. They  will be able to apply sealants or protective paints to individual  sections under the remote guidance of engineers, who will control the  work and visually check the results via monitor screens.
     
With  these new tools, US bridge inspection will be “reinvented and  transformed into a more consistent, reliable and rapid process,”  according to the university’s Professor Genda Chen. He is also director  of a new federal university transportation centre entitled Inspecting  and Preserving Infrastructure through Robotic Exploration.
 
Meanwhile,  the 
     
According  to  the National Bridge Inventory, the US has more than 18,000   ‘fracture-critical’ bridges - those with one or more steel members in   tension which, if they failed, which would cause partial or complete   collapse. Early detection of this type of problem is the aim of start-up   company Resensys, which presented its wireless fault monitoring system   at a September 2016 meeting of the Northeast Bridge Preservation   Partnership in Baltimore.  
     
Renesys’   small-scale, low-maintenance Senspot devices are designed for the   long-term monitoring of strain variations caused by both temperatures   and live traffic – including overstrains caused by drivers of overweight   vehicles ignoring the maximum load restrictions. They can also be used   to monitor the condition of existing cracks. Founder Mehdi Kalantari,  of  the University of Maryland, told 
     
The   issue of providing energy to power such devices on often-remote   structures has stimulated a series of mains-free initiatives as,   according to some US estimates, energy-independent and wireless systems   can offer savings on installation and maintenance of between 60% and   70%. 
     
One developer is   Lord Microstrain Sensing Systems, whose solar-powered sensors collect   data on, for example, the performance of bearings, bridge vibration and   longitudinal movement and then wireless transmit that information for   cloud storage. An early installation is on a major road bridge over the   Corinth Canal, in Greece – an area subject to seismic disturbance.  
     
Another   innovator at the University of Texas at Austin, is working on a   fast-assembly, energy-harvesting system that uses an electromagnetic   generator to convert the vibrations of steel highway bridges into   electricity for storage. 
     
At   national level, USDoT’s 
     
In   October 2015, it launched a web-based bridge portal with a  centralised,  national repository that enables the rapid access to, and  querying of,  structural performance-related information, using advanced  analysis  tools and the integration of resources via data fusion  techniques. This  offers full access to the Long-Term Bridge Performance  data and the  recently-released version 1.5 includes National Bridge  Inventory data  and field-collected outputs to date.
     
Version   2, due out this September, will include legacy data on, for example,   enhancements to bridge deck deterioration modelling and cost analysis.   Future developments envisage asset management tools, 3D visualisation   techniques and mobile apps for use by engineers in the field.
     
The   FHWA hopes that the correlation of facts on the temporal condition of   superstructures, substructures, bearings, joints and coatings will   reveal unknown mechanistic properties and will help identify more   innovative approaches.
     
But,   to give the last word to Professor Todd, “The technologies are   available here, in the US. It’s a matter of getting them optimised,   built and deployed. We simply don’t have the investment by government   and state agencies to properly manage our bridges. In reality, the US   government has done little to nothing in infrastructure investment or   advancing technology - despite all the hysteria after the Minneapolis   collapse.”
     
He wants   funding to reflect the five-to-10 year timelines needed to mature   scientific and engineering concepts, as opposed to the six-to-18 month   process to market for industrial products. He also wants to see new   bridge monitoring technologies being “integrated and deployed in a   systematic manner.”
Iowan initiative        
         
In May 2017, the 
         
Testing times        
         
Cumulative,  non-destructive evaluation testing has been carried out for many years  and while new methods are being developed, the records from previous  tests retain a significant value for road authorities. When the  ‘Virginia Test Bridge’ was demolished in 2016, the deterioration data it  had generated over a series of checks was too important to lose. So,  sections have survived as test beds for, among other things, research  into scanning systems for overlaid surface condition monitoring.
    
        
        
        



