Skip to main content

IR’s invisible benefit for traffic surveillance and enforcement

Advances in vision technology are enhancing traffic surveillance and enforcement applications. Variable lighting conditions have long been a stumbling block for vision technology applications in the transport sector. With applications such as ANPR, the read-rate may vary between daylight and night and can be adversely affected by glare and low sun. Madrid, Spain-based Lector Vision had these considerations in mind when designing its Traffic Eye ANPR system, which combines off-the-shelf and custom hardware
June 30, 2016 Read time: 4 mins
The software first searches for rectangular regions of interest in the image where a license plate is likely to be present

Advances in vision technology are enhancing traffic surveillance and enforcement applications.

Variable lighting conditions have long been a stumbling block for vision technology applications in the transport sector. With applications such as ANPR, the read-rate may vary between daylight and night and can be adversely affected by glare and low sun.

Madrid, Spain-based 7545 Lector Vision had these considerations in mind when designing its Traffic Eye ANPR system, which combines off-the-shelf and custom hardware with bespoke software. Instead of using visible light, Traffic Eye illuminates the scene with pulsed infrared light while simultaneously capturing monochrome images and scenic overviews using two separate 541 Point Grey cameras.

The system’s software detects vehicle number plates in the monochrome images and identifies the individual characters using an optical character recognition technique with an artificial neural network. The license plate number and the colour overview are then correlated in real time and transmitted to a control centre.

Images from the monochrome camera, Point Grey’s 1,920 pixel x 1,200 pixel GigE with a Sony Pregius CMOS global shutter sensor and an IR filter, are analysed to determine the license plates. An almost identical 1,920 x 1,200 pixel GigE camera but equipped with a full colour 576 Sony IMX249 CMOS sensor, captures an overview. Other camera options can be used to suit the particular location, road configuration and application.

While the pulsed light overcomes low light conditions, competing against bright sunlight is a very different matter. However, in the IR spectrum the intensity of sunlight varies according to its wavelength, meaning the wavelength chosen to illuminate the traffic scene is an important design consideration.

Traditionally, many ANPR systems have used infrared light in the 880nm wavelength range whereas at 940nm, the intensity of sunlight is about 40% lower than at 880nm. Therefore in order to minimise sunlight interference, Lector decided to illuminate traffic scenes with a custom-built array of pulsed LEDs that operate at 940nm.

There is, however, a trade-off as Gonzalo Garcia Palacios, R&D manager at Lector Vision explains:  “When using the higher 940nm wavelength LEDs, the sensitivity of the sensor in the camera is reduced.”

To compensate for this phenomena the control system pulses the LEDs at microsecond intervals to produce an intense strobed IR light that, when reflected from the license plates, can be easily detected by the monochrome camera. By pulsing the LEDs the intensity can be higher than the continuous rating would allow. While the scene is illuminated by the pulsed IR light, the controller triggers the cameras to capture both monochrome and colour images of the traffic.

Both images are then transferred over the GigE interface to Traffic Eye’s embedded quad-core processor where the monochrome image is analysed to determine the characters on the license plates.

Initially the software searches the image for rectangular regions of interest which could be a license plate and these regions are further analysed by detecting discontinuities in brightness in the images to determine the characters’ boundaries. Having located the characters the system then identifies each one using a software-based artificial neural network which has been ‘trained’ by being presented with thousands of examples. The system then uses these examples to infer rules to identify unknown characters from the images captured by Traffic Eye’s monochrome camera. The license plate number and images of the scene (and optionally a GPS time stamp) can be transmitted via cable, optical fibre, GPRS or 4G. Agencies monitoring the traffic flow and enforcing red light violations can view both colour and monochrome images to identify particular vehicles.

Aided in part by the global shutter, the system is said to have proved capable of reading number plates of vehicles travelling at speeds in excess of 200km/h. Lector has now trained the software to identify license plates from more than 40 countries including most countries in South America, South and Central Europe, and Arabic countries including the UEA and Algeria.

At Intertraffic Point Grey announced 3.2 and 5MP CMOS versions of its Blackfly GigE and Chameleon3 USB3 cameras with Sony’s 2nd generation Pregius global shutter sensors. A smaller (3.45µm) pixel size allows more pixels to be packed into a smaller optical format, allowing more compact and lower-cost lenses to be used.

For more information on companies in this article

Related Content

  • Tattile is on the road in Turkey
    March 9, 2021
    Turkish authorities are using hundreds of cameras including Tattile Vega Smart 2HD units
  • Lufft’s MARWIS moves weather
    September 22, 2014
    A mobile road weather sensor is providing authorities with new options for monitoring road conditions and winter maintenance operations. Road and traffic engineers know the vulnerable points in their network – cold spots where ice forms first, high-banked roads where snow accumulates, fog pockets… Traditionally, most authorities will position weather stations at these points to detect and monitor road conditions during bad weather events.
  • Gardasoft liquid lens provides faster focus and better images
    March 21, 2018
    Gardasoft is demonstrating how to capture high-quality images of fast-moving vehicles using an innovative liquid lens concept. This, the company says, provides significant performance benefits over traditional, fixed-focus lenses. Many ITS applications require vision systems which can cope with widely varying distances between object and camera. A challenge in the ITS space is the high speeds which can be encountered, particularly in free-flowing traffic. Gardasoft’s approach features a shape-changing
  • Sony’s shows 4K camera at Istanbul
    May 28, 2015
    A pre-production 4K digital camera with a 144x zoom is making its debut on the Sony stand. The resolution of the diminutive camera’s rolling-shutter CMOS sensor is four times that of full HDTV and comes with a 12X optical zoom in addition to 20x digital zoom. In the first 8x range of the digital zoom Sony says there is no loss of resolution and has called this a Clear Image Zoom.