Skip to main content

VTT’s robot car parks autonomously

VTT Technical Research Centre of Finland’s robot car Marilyn is parking autonomously - 100m away from its driver. The trial in Tampere uses the Internet of Things (IoT) and is expected to allow vehicles to park closer together without fear of collisions at airports and shopping centres. Johan Scholliers, project manager at VTT, says the technology will also help reduce congestion in parking areas.
June 25, 2018 Read time: 2 mins
814 VTT Technical Research Centre of Finland’s robot car Marilyn is parking autonomously - 100m away from its driver. The trial in Tampere uses the Internet of Things (IoT) and is expected to allow vehicles to park closer together without fear of collisions at airports and shopping centres.


Johan Scholliers, project manager at VTT, says the technology will also help reduce congestion in parking areas.

Marilyn utilises 7643 Here Technologies’ ultra-wideband (UWB)-based technology which allows it to be positioned indoors without satellite assistance. UWB is a radio technology that transmits data in short and low-power pulses over a wide frequency band.

The driver parks the car through an app that reserves a parking space. A parking guidance system confirms whether the space is free and detects potential problems using traffic cameras connected to an open IoT platform – which in turn transmits route information to the vehicle.

VTT’s trial is part of the Autopilot project’s investigation of the potential for IoT-automated driving. The initiative is funded by the European Commission and is also operational in Italy, the Netherlands, France, Spain and South Korea.

For more information on companies in this article

Related Content

  • Sensors reducing pedestrian-car collisions
    January 22, 2016
    The EU-funded ARTRAC project has developed new sensor technologies which it believes could help meet the European Commission’s target of halving road accidents by 2020. The project, which includes carmakers Volkswagen and Fiat, developed an affordable radar sensor that uses multiple antennas to detect, classify and avoid obstacles on the road before collision and reduce the likelihood of vehicles colliding with pedestrians.
  • Industry collaboration ‘the key to avoiding autonomous driving traffic congestion’
    July 19, 2016
    A joint whitepaper published by Here and SBD argues that new levels of vehicle automation will increase traffic congestion in the foreseeable future and it's up to the automotive industry to enhance its collaboration in order to create a seamless transition as we reach these new levels of automation. According to co-author of the study, Andrew Hart, director at SBD, autonomous cars have the potential in the long-term to revolutionise mobility and radically improve the safety of our roads. However, the pa
  • Improving the positional accuracy of GNSS road user charging
    July 23, 2012
    The European GINA project is intended to address and overcome many of the institutional, technical and public acceptance hurdles currently faced by satellite-based road user charging schemes. Dave Tindall and Denis Naberezhnykh, TRL, and Laure Dezes, ERF, write. Pay-as-you-drive Road User Charging (RUC), whereby demand (or congestion) is managed by applying appropriate tariffs in order to encourage drivers to make their journeys at less busy times, on less congested routes or even on different modes, could
  • Mobinet counters weighty cross border concerns
    November 9, 2017
    A Mobinet pilot is combining onboard weighing with V2X comms to streamline vehicle weight enforcement. David Crawford reports. Pan-European, cross-border weigh-in-motion (WIM) for trucks is now a practical possibility, following successful Scandinavian trials within the EU-co-funded Mobinet (Internet of Mobility) programme. New technology is using strain sensors, located on load-bearing components and routinely installed in truck fleet management systems.