Skip to main content

Siemens launches radar-based parking space detection pilot

As part of the City2.e 2.0 research project, Siemens is demonstrating a faster way to find kerbside parking in the Bundesallee in Berlin in cooperation with the Senate Department for Urban Development and the Environment in Berlin (SenStadtUm), the VMZ Berlin Betreibergesellschaft mbH, the Institute for Climate Protection, Energy and Mobility (IKEM), and the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI). Street lamps on a 200 metre long section of road betwee
September 24, 2015 Read time: 2 mins
As part of the City2.e 2.0 research project, 189 Siemens is demonstrating a faster way to find kerbside parking in the Bundesallee in Berlin in cooperation with the Senate Department for Urban Development and the Environment in Berlin (SenStadtUm), the 6409 VMZ Berlin Betreibergesellschaft mbH, the Institute for Climate Protection, Energy and Mobility (IKEM), and the Robotics Innovation Center of the German Research Center for Artificial Intelligence (DFKI).

Street lamps on a 200 metre long section of road between Walther-Schreiber-Platz and Friedrich-Wilhelm-Platz in Berlin Friedenau have been equipped with radar sensors that continuously monitor urban parking areas and report free parking spaces and the number of occupied e-parking spots to parking space management software. The network of sensors scans from above an area of up to 30 metres, the equivalent of five to eight parking spaces.

The data collected by the system can either be used by the traffic information centre for its own information services or forwarded through a data interface, such as to app operators, so that drivers can always find free parking spaces simply by using their smartphone, a navigation device or the parking guidance signs.

Key to the project is the software application developed by the Robotics Innovation Center uses intelligent learning methods. Data from parking space sensors helps the system to recognise typical parking space situations. This learning feature enables the system to predict in advance where and when the best opportunities exist for finding a free parking space. The system is also coupled with a multimodal route planner; if no parking spaces are available, the route planner provides real-time information on possible options for switching to public transportation services.

The project is funded by the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB). By doing so, the Federal Ministry is pursuing one essential goal: the reduction of the carbon dioxide, pollutant and noise emissions due to road traffic.

The test results will be available in 2016 and should prove that by reducing parking

search traffic the system is suitable for cutting CO2 emissions.

For more information on companies in this article

Related Content

  • Virginia Tech reveals vested interest
    May 9, 2019
    New ITS systems on either side of the Atlantic – such as an intriguing piece of connected clothing – aim to reduce the casualty toll among road maintenance personnel, says Alan Dron t’s not a lot of fun working on road maintenance or road construction worksites. By definition, you’re out in all weathers. You’re not popular with motorists, who blame you for hold-ups. It’s frequently physically arduous. And, worst of all, the sector has an unenviable record of injuries - even fatalities. Often working jus
  • Siemens technology installed on UK connected vehicles project
    November 14, 2016
    Siemens’ Sapphire journey time measurement system for traffic monitoring using Bluetooth technology is being installed on three main corridors into the centre of Coventry as part of a new UK project to assess how connected vehicles interact on key corridors leading into the city centre from the national road network. Led by Coventry City Council, the intelligent variable message systems (iVMS) project will draw expertise from Coventry University’s Centre for Mobility and Transport in collaboration with
  • Inrix integrates parking solution with ultrasonic sensors
    January 3, 2018
    Inrix has introduced new technology that uses ultrasonic sensors (USS) to scan, collect, and transmit real-time parking occupancy information to help guide drivers to available parking spaces. It will also help to enhance the quality of Inrix Parking. As the car is moving down the road, USS transmit sound waves and collects data on parked cars and empty spaces. It is then sent anonymously to the Parking Cloud to be analysed and combined with the parking availability prediction engine which determines block
  • 2012 US Urban Mobility Report published
    February 8, 2013
    Researchers at the Texas A&M Transportation Institute (TTI) have come up with a way to measure the unreliability of trip times due to traffic congestion. The Planning Time Index (PTI) illustrates the amount of extra time needed to arrive on time for higher priority events, such as an airline departure, just-in-time shipments, medical appointments or especially important social commitments. If the PTI for a particular trip is 3.00, a traveller would allow sixty minutes for a trip that typically takes twenty