Skip to main content

Looking 15 minutes into the future

Fourth annual Traffic4cast congestion prediction competition seeks AI expertise
By Alan Dron August 11, 2022 Read time: 2 mins
Here data for the challenge is based on more than 100 billion GPS probe points (image credit: IARAI)

Members of the machine learning community are being challenged to use the latest AI methods to model and predict future traffic congestion levels and vehicle speeds across three major cities – London, Madrid and Melbourne – in the fourth annual Traffic4cast competition

The challenge has been set by the Institute of Advanced Research in Artificial Intelligence (IARAI), an independent global machine learning research institute, together with location data specialist Here Technologies. 

The event’s core challenge sees participants asked to predict congestion level classes (red/yellow/green) for the entire road graph 15 minutes into the future, using only the past hour of traffic loop counter data. 

In the extended challenge, contestants have to predict the average speeds on each road segment of the graph 15 minutes into the future, again, using only the previous hour’s traffic loop counter data.

Here provides the participants with traffic film clips based on two years of real-world data for the three cities.

The clips were created using Here data based on more than 100 billion GPS probe points from a large fleet of vehicles. 

The data is fully anonymised and transformed into movie clips that depict traffic over time, including morning, evening and rush hour traffic events. 

The competition’s aim is to reduce the barriers for using readily available, public loop counter data to predict future traffic state of entire cities. 

IARAI says that the Traffic4cast competition is unique in merging AI with real-world datasets and traffic research to advance the understanding of complex traffic dynamics and systems. 

Winners will receive prizes at NeurIPS 2022, the leading AI conference.
   
The three top-placed entries in the core challenge will receive vouchers or cash worth, respectively, €5,000, €3,000 and €2,000. All three teams will also receive one free NeurIPS 2022 conference registration.

Similar prizes will also be available for the top-placed three teams in the extended challenge. 
 
Submissions are due by October 15.

For more information on companies in this article

Related Content

  • GridMatrix maximises power of existing infrastructure
    August 5, 2023

    GridMatrix’s breakthrough software platform for multimodal data collection and analytics is revolutionising transportation planning and decision making across the US. 

    Powered by artificial intelligence and combining the latest advances in cloud computing, machine learning and advanced sensing, GridMatrix’s platform is deployed in New York City on the world’s busiest bridges and tunnels, trusted by multiple state departments of transportation, and in a fast-growing number of American towns and cities. 

  • Vision technology lifts blinkers from tunnel vision
    December 6, 2017
    Sony’s Jerome Avenel looks at how advances in imaging technology are helping improve safety. On the 24th March 1999, a Belgian truck transporting flour and margarine through the 11.6km Mont Blanc tunnel caught alight when a cigarette stub entered the engine induction snorkel, lighting the paper air filter. The fire left over 30 dead and many more injured. At the time, the Mont Blanc tunnel disaster was the world’s worst tunnel fire.
  • What's next for transport communication systems?
    February 2, 2012
    Moxa Americas, Inc.'s Charles Chen ponders the way forward for transportation communications networks in the US
  • Bringing V2I and V2V communications to workzone safety
    January 26, 2012
    Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering talks about efforts to bring V2I and V2V communications into work zones. With USDOT backing and under the auspices of the ITS Joint Program Office Connected Vehicle Research (formerly IntelliDrive) research programme, M. Imran Hayee of the University of Minnesota Duluth's Department of Electrical and Computer Engineering along with team of his students, have been conducting research into the application of