Skip to main content

Looking 15 minutes into the future

Fourth annual Traffic4cast congestion prediction competition seeks AI expertise
By Alan Dron August 11, 2022 Read time: 2 mins
Here data for the challenge is based on more than 100 billion GPS probe points (image credit: IARAI)

Members of the machine learning community are being challenged to use the latest AI methods to model and predict future traffic congestion levels and vehicle speeds across three major cities – London, Madrid and Melbourne – in the fourth annual Traffic4cast competition

The challenge has been set by the Institute of Advanced Research in Artificial Intelligence (IARAI), an independent global machine learning research institute, together with location data specialist Here Technologies. 

The event’s core challenge sees participants asked to predict congestion level classes (red/yellow/green) for the entire road graph 15 minutes into the future, using only the past hour of traffic loop counter data. 

In the extended challenge, contestants have to predict the average speeds on each road segment of the graph 15 minutes into the future, again, using only the previous hour’s traffic loop counter data.

Here provides the participants with traffic film clips based on two years of real-world data for the three cities.

The clips were created using Here data based on more than 100 billion GPS probe points from a large fleet of vehicles. 

The data is fully anonymised and transformed into movie clips that depict traffic over time, including morning, evening and rush hour traffic events. 

The competition’s aim is to reduce the barriers for using readily available, public loop counter data to predict future traffic state of entire cities. 

IARAI says that the Traffic4cast competition is unique in merging AI with real-world datasets and traffic research to advance the understanding of complex traffic dynamics and systems. 

Winners will receive prizes at NeurIPS 2022, the leading AI conference.
   
The three top-placed entries in the core challenge will receive vouchers or cash worth, respectively, €5,000, €3,000 and €2,000. All three teams will also receive one free NeurIPS 2022 conference registration.

Similar prizes will also be available for the top-placed three teams in the extended challenge. 
 
Submissions are due by October 15.

Related Content

  • February 19, 2024
    Don’t look at the jigsaw pieces – see the whole puzzle, says CCTA
    There are three main barriers to taking transport ideas from the pilot stage to real-life usage: incompatible technology, local control and limited funding. Tim Haile of California’s Contra Costa Transportation Authority has some thoughts on how to overcome them
  • April 9, 2015
    Microsoft research aims to predict traffic jams
    Microsoft Research is working with Federal University of Minas Gerais in Brazil to tackle the problem of traffic jams. The immediate objective of this research is to predict traffic conditions over the next 15 minutes to an hour, so that drivers can be forewarned of likely traffic snarls. The Traffic Prediction Project plans to combine all available traffic data, including both historic and current information gleaned from transportation departments, Bing traffic maps, road cameras and sensors and the so
  • July 30, 2021
    AI is creating road maintenance savings
    Artificial intelligence is starting to create savings for hard-pressed local authorities when it comes to road maintenance. David Crawford reviews recent advances in cost and performance control
  • September 19, 2017
    Vehicle analytics market ‘to grow by 26 per cent by 2022’
    A new market research report by MarketsandMarkets estimates that the market for vehicle analytics will grow from US$1124.1 million in 2017 to US$3637.4 million by 2022, at a Compound Annual Growth Rate (CAGR) of 26.5 per cent. According to the report, the major driving factor for this market remains advances in technologies, such as machine learning, artificial intelligence (AI) and predictive maintenance to enhance fleet management, as well as increasing use of real-time data collected from sensors and