Skip to main content

TRL: In-vehicle tech is developing – but the driver isn’t

The evidence base for distracted driving has failed to keep up with technological developments, argue TRL’s Neale Kinnear and Paul Jackson. New research is urgently needed
August 19, 2019 Read time: 4 mins
Even using hands-free phones increases response times and stopping distance by over 12.5m when travelling at 70mph

The chief executive of Highways England has expressed concerns about the safety of in-car touchscreens and the potential for distracting drivers. This concern is echoed by many fleet managers, due to in-vehicle environments becoming filled with technology designed to assist (or entertain) drivers.

British law states it is illegal to hold a mobile phone or satellite navigation device while driving or riding a motorcycle. Drivers must have hands-free access, such as a Bluetooth headset, voice command or built-in sat nav to use these devices legally.

The key research cited to support the law was conducted at TRL in 2002 (see Don’t drive drunk – or use a phone), which benchmarked the distracting effects of using hands-free and hand-held mobile phones against the effects of being under the influence of alcohol.

This study showed that using a hand-held device while driving increased response times by half a second, therefore increasing stopping distance by over 15m when driving at 70mph. Even using hands-free increased response times and stopping distance by over 12.5m when travelling at 70mph (see figure 1).

Since then, TRL’s simulated distraction test route has been used to investigate the level of impairment while driving caused by text messaging and using social networking applications (see figure 2).

Task dependent

Research from 2015 suggested that the impact of distraction on safety is task dependent - rather than device dependent. For example, both text messaging and using an entertainment system are more distracting than a hands-free mobile phone call. Further research has found that drivers see using unfamiliar car controls and car displays, or add-on media (e.g. music devices) to be more distracting than using a hands-free device.

The findings are valuable in terms of what they tell us about the distracting effects of mobile phones and earlier generations of human machine interfaces (HMIs). However, in the years since these studies were conducted, the range of potential sources of in-vehicle distraction and the variety of tasks that are conducted via HMIs has increased significantly, with a likely growth in distraction effects.

The last decade has witnessed an explosion in the availability of new vehicle technology. Some has been built into the vehicle by manufacturers, some has been added within aftermarket products and some has been brought into the vehicle by drivers, such as mobile phones.

This leads to several questions: To what extent are research studies based on mobile phone use relevant to modern HMIs? Is further research required to investigate the effects of interacting with the latest versions of HMIs? And should a limit be placed on the features added to HMIs, as was suggested by a panel of experts at a Society of Automotive Engineers Congress in 2016, which urged HMI designers and engineers to stop trying to turn automotive HMIs into iPhones?

Rapid advances

Technology is advancing at a rapid pace. However, one feature of the driving environment that hasn’t developed is the driver. Using advanced simulators, TRL tests the latest in-vehicle systems and provides guidance to regulatory authorities and manufacturers to ensure that the technology and increased levels of driver assistance offered by new HMIs do not overload the driver.

This is especially important when considering the move towards increased automation of the driving task; it will be many years before a large part of the fleet is fully, or even partially, automated – in the meantime the information presented to the vehicle operator steadily increases, while their role is gradually reduced to that of a system monitor.

Our research and understanding of this area suggest that the evidence base for measuring and monitoring driver distraction should be reviewed and updated to reflect the latest developments in HMIs. This should include an assessment of the effects of attending to multiple sources of information – not all of it relevant to the driving task.

For example, on behalf of IAM RoadSmart, TRL is using the DigiCar simulator to measure the effects on performance of engaging with Android Auto and Apple CarPlay while driving.

Without effective regulation based on sound science, the explosion of new vehicle technology that has occurred in the last 15 years could be dwarfed by the influx of the next 10 years. Up-to-date evidence is required to ensure that in-vehicle technological improvements don’t have unintended, negative consequences.

For more information on companies in this article

Related Content

  • Prowag signals change to vision statement
    February 15, 2024
    New pedestrian signal requirements designed to make crossings safer for the visually impaired mean that accessible signals are no longer just an option for US cities and municipalities. They now have the backing of the law, explains Andrew Stone
  • Park assist - Technology may be ready for mass market but user experience is not
    June 5, 2015
    Intelligent parking assistance systems which take over a portion of a parking task are becoming increasingly common in mid-range and premium model vehicles. Touted as convenience features which allow drivers to park in small spaces with comfort and ease, usability bugs have been identified in some of the current implementations, according to a new evaluation by the Automotive Consumer Insights group (ACI) at Strategy Analytics. The evaluation of advanced parking assistants in several vehicles says the p
  • Global navigation reference point to test zero emission driverless vehicles
    December 4, 2014
    A successful consortium led by the UK’s Transport research Laboratory (TRL) has been selected by Innovate UK to deliver the GATEway project (Greenwich Automated Transport Environment), one of three projects awarded to test driverless vehicles in UK urban locations. The US$12.5 million project will see three trials of different types of zero emission automated vehicles within an innovative, technology-agnostic testing environment set in the Royal Borough of Greenwich. The ‘prime meridian’ was establi
  • The path to safer roads: America can learn from Europe’s example, says Verra Mobility
    May 1, 2024
    Many US states are establishing road safety programmes that will inspire others. TJ Tiedje, vice president commercial at Verra Mobility, explains why this is important