Skip to main content

Looking both ways for speeding vehicles

Single-camera bi-directional speed enforcement can reduce the cost of enforcing speeding on two-way roads without repositioning the camera. Truvelo has received UK type-approval for a simultaneous bi-directional (SBD) enforcement camera, the D-Cam P digital, which can capture speeding motorist both those travelling towards and away from the camera. It is also in the process of carrying out the first installations of the D-Cam P in the UK.
June 9, 2015 Read time: 6 mins
The D-Cam P has shown itself to be capable of providing very good image quality in a variety of light and seasonal conditions. The SBD feature on the D-Cam P provide simultaneous speed enforcement across two lanes.
Single-camera bi-directional speed enforcement can reduce the cost of enforcing  speed limits on two-way roads without repositioning the camera.

143 Truvelo has received UK type-approval for a simultaneous bi-directional (SBD) enforcement camera, the D-Cam P digital, which can capture speeding motorists travelling towards and away from the camera. It is also in the process of carrying out the first installations of the D-Cam P in the UK.

“In most instances the problem of speeding vehicles is not restricted to those travelling in one direction – it often applies to both directions,” says Peter Hill, operations director for Truvelo (UK). “While it is possible to swivel a camera to check vehicles travelling in one or the other direction, drivers will recognise which way the camera is pointing and then decide whether or not to comply with the limit.” 

The new system overcomes this problem by using a single camera to simultaneously enforce two lanes where vehicles are travelling in opposite directions. Vehicles travelling towards the camera are photographed from the front while those travelling away from the installation are photographed from the rear, with the images marked to indicate in which lane the offending vehicle is travelling.

Triggering the camera is done by a sensor array set into the surface of each carriageway. This consists of three in-ground piezoelectric axle sensors in each carriageway to detect the vehicles and measure their speed. Secondary check markings are set at a specified distance from the sensors and appear in the enforcement images.

According to Hill, using in-ground piezoelectric sensors maximises accuracy because the positions of both the sensors and the secondary speed check lines are known precisely. The sensors also enable axle-based classification and automatic selection of a lower speed threshold where required, as well as identifying which lane the speeding vehicle is using and therefore which way it is travelling. The enforcement images contains a visual indication of which of the vehicles is of interest and, as per normal, this information is displayed in the data field of the photographs to be used as evidence.

Air gap

Both the images and data relating to offending vehicles are encrypted and transferred via an ADSL line or 3G connection and if this is not possible they can be downloaded to a shuttle PC as a transfer-only device on which the images cannot be viewed. All the data regarding the offending vehicles is fed into the system’s back office servers (capable of managing in excess of 25 D-Cams) the first of which stores and writes the encrypted data and images to a CD. The CD is then viewed on the second server (called the Truvelo’s Violation Manager) – a process which creates the ‘air gap’ required by the UK Home Office.
The second server deciphers the encrypted images and data and from that point the information can be viewed and also moved across into whichever back office offence handling package is being used with compatible options including 127 StarTraq and 1676 Serco (now 378 Cubic).

In practice, to enforce speed limits in two-way traffic situations the centre line of each set of secondary check lines is aligned across both carriageways. In the lane travelling towards the camera these secondary speed check lines are typically situated 1.8m in front of the closest of the three piezoelectric sensors and the vehicle is photographed from the front. In the lane travelling away from the camera the secondary speed check lines are typically 5m from the sensor array in order that the rear axle of most vehicles will be on the lines, positioning the vehicle to be photographed from the rear. Hill says this system provides greater siting flexibility, particularly at intersections where there may already be in-ground sensors or where access chamber covers are present.

According to Hill, the cost of installing an additional array of sensors in order to create a simultaneous bi-directional site is negligible, compared to the additional traffic calming and enforcement benefits achieved. The D-Cam is also designed in order that it can be moved between sites to maximise operational flexibility and coverage. This includes circulating it between a mix of speed only sites and speed on green sites.

Less masking

For practical reasons the 3.4m tall camera post is always adjacent to the front photo lane and there is potential that such a vehicle can mask a speeding vehicle heading in the other direction from being photographed from the rear. However, Hill says that as the SBD system takes only a single photograph, this is less of a problem than with camera systems that use two photographs. 

One of the latest installations is in Central Bedfordshire in the UK where the Council officials have allocated capital to replace the existing wet-plate cameras to digital and to expand the automated enforcement network.

Paul Salmon, team leader for Traffic Management and Road Safety, said not only did the Council apply standard KSI figures to selection of new camera sites, it also looked to address the effects speeding motorists have on the lives of local residents. To do this it applied a metric of 35% of the two-way weekly traffic exceeding the Association of Chief Police Officers (ACPO) enforcement threshold (10% overspeed plus 2mph) for the posted speed limits. The result is that six SBD cameras are being installed at new sites around the county as well as the upgrades to the existing installations.

Salmon says the camera: “Does exactly what it says it will. At sites where we’ve used it, we get double the coverage, and double the impact, from a single camera and there was very little disruption during the upgrade to get the new cameras in and running.”

However, the first installation of the D-Cam SBD was in northern England when the West Yorkshire Casualty Reduction Partnership located the cameras along the A61 - a busy principal urban road between the Yorkshire cities of Wakefield and Leeds. This road, which is the responsibility of Wakefield Metropolitan District Council, passes through mixed residential and retail areas, and over a period of five years a 2.3km (1.4mile) section experienced 38 accidents - nine serious – in which speed was a major factor. While the posted limit is 48km/h (30mph), a week-long survey recorded a 90th percentile speed of 58.5km/h (36.4mph). To counter this two SBD-capable D-Cam cameras located approximately 800metres (0.5 mile) apart were commissioned in summer 2014.

West Yorkshire Casualty Reduction Partnership’s operations manager Zafar Iqbal said the SBD feature has proved capable of capturing speeding vehicles travelling in opposite directions within the same second.

Iqbal was initially attracted by the D-Cam’s front-facing capability (it has UK Home Office Type Approval for both front and rear photography). Although driver identification is not required by law in speeding offence cases, this has provided an additional intelligence tool and has already been used to provide assistance to crime officers. This happened when a vehicle is associated with a crime has been captured by the front photo camera and the image quality has been good enough to identify the driver and help secure a conviction.


Red light enforcement

In addition, the same camera can also be used for red light enforcement applications for vehicles travelling away from the installation. Once the amber grace period (typically three seconds) has passed, the lights turn to red with typically a 1 sec grace period, then the camera switches to red light enforcement mode and will capture two images of an offender. The first shows the speed and offending vehicle straddling the Stop bar.

A second photograph is taken when the vehicle is 12-15m (40-50ft) away (depending on junction size) and includes the image of the traffic lights to confirm that a red light offence has taken place.

For more information on companies in this article

Related Content

  • Sony helps Rio get a better view of the Olympics
    June 29, 2016
    With the Olympics approaching, Sony’s Stephane Clauss examines how the latest camera technologies can help cities cope with the huge crowds attending major events. This August will see more than 10,000 athletes head to Rio de Janeiro for the Olympics Games. Alongside them will be their coaching staff, a hoard of logistics teams, thousands of volunteer marshals (London 2012 had 70,000) and millions of spectators. All such major events have nervous jitters on the way to the opening ceremony. This year has see
  • Free-flow tolling needs classification technology rethink
    February 2, 2012
    The move to all-electronic fee collection should be encouraging tolling authorities to look again at whether their vehicle classification criteria and technologies remain at all appropriate. Bob Lees of Idris Technology writes
  • Maturing photo enforcement gains legal status, public support
    August 2, 2012
    In the US, affirmation of the photo traffic enforcement sector's legal status and rising public support were significant aspects of 2009. James Tuton, President and CEO of American Traffic Solutions, looks back over the year. In 2009, the photo traffic enforcement industry in North America continued to grow and mature, accompanied by increased public, legislative and legal scrutiny. While public support remains strong, we also saw increased attempts to undermine the industry by representatives of a small bu
  • A global standard for enforcement systems – is it necessary?
    May 30, 2013
    Jason Barnes speaks to leading figures from the automated enforcement sector about whether a truly international standard for automated enforcement systems is necessary or can ever be achieved. Recent reports of further press controversy in the US over automated enforcement (see ‘Focusing on accuracy?’, ITS International raise again the issue of standards and what constitutes ‘good enough’ in terms of system accuracy and overall solution effectiveness. Comparatively, automated enforcement has always expe