Skip to main content

Hyped has hyperloop hopes

Student group says it made serious progress with asynchronous motors this year
By David Arminas May 20, 2020 Read time: 2 mins
Linear induction motors with multiple poles help achieve maximum thrust, says Hyped

Hyped, a student group at Scotland’s University of Edinburgh, claims to have pushed forward the technology that could make the hyperloop concept a reality.

Hyped says it has produced in the past several months a more efficient linear induction motor (LIM), a stronger and lighter chassis and an improved braking system.

Hyperloop - a proposed network of near-vacuum steel tubes for people and cargo in magnetically levitating pods - could cover the 650km between Edinburgh and London in around 45 minutes, according to advocates of the system. The fastest trains take just under four and half hours.

Hyped said it made serious progress with asynchronous motors this year, removing the need for a rotating rotor which had previously limited the maximum speed.

LIMs with multiple poles help achieve maximum thrust and efficiency while reducing the static end-effects.

A complex modular power system supplies these motors. By separating the power source from the series connection components, Hyped said it has ensured minimum risk for those working on the project.

Accommodating the powerful LIMs required an ultra-strong chassis without compromising on weight: Hyped produced a 1.5m-long chassis that weighed just 15kg and was comprised of material from last year’s chassis.

Implementing a sandwich structure of carbon-fibre reinforced polymer laminates around an aluminium honeycomb core had worked very well in the past.

However, due to the large forces of attraction created by the newly improved LIMs, additional stiffening was required and achieved with composite panels.

Epoxies and polyurethanes are typically used to attach the panels. But Hyped’s engineers used a methacrylate adhesive to achieve a 33.2% weight reduction - even with the composite panels added. This resulted in a strong and lightweight structure.

A reliable, strong and compact braking system was achieved this year with a primary system of symmetric, magnetic brakes.

Magnets attached to a moving hyperloop pod will generate a magnetic field that changes relative to the conductive aluminium I-beam. This induces a magnetic field in the rail that will oppose the pod’s motion and decelerate it.

This system doesn’t produce fine particulates during braking because it removes all direct contact, using magnetic forces instead, Hyped says. A secondary system of friction brakes is used for low speeds where magnetic breaking is less effective.

Related Content

  • September 8, 2023
    A more equitable approach to road charging: is the technology there yet?
    Thinking around road user charging, distance-based payments, and even mileage rationing is ever-widening with new concepts and suggestions being aired and brought forward every other week. Yet, as Jorgen Petersen of Systra explains, there are already many solutions in place throughout the world which promote modal shift, reduce traffic and improve air quality…
  • December 7, 2020
    Saving the world, one parking space at a time
    Donald Shoup, professor of urban planning at University of California, Los Angeles (UCLA), tells Adam Hill about why parking is too cheap – and how Monopoly could seriously raise its game
  • December 19, 2016
    Confusion over electric motors for heavy trucks
    According to Dr Peter Harrop of research company IDTechEx, there is still no agreement on the best type of electric motor to use in heavy trucks. The company’s analysis indicates that the booming, confusing traction motor business will rise to around US$400 billion in 2027. Its new report, Electric Motors for Electric Vehicles 2017-2027 navigates the jargon, the design options and the disagreements. The changing needs and evolving technology are matched to create forecasts and technology timelines based
  • July 31, 2012
    Developing an integrated WIM/ANPR enforcement system
    The weigh in motion market remains especially buoyant and technological development continues to reflect this. Although there are major differences in operating philosophies, particularly between developed and developing countries, both the numbers of countries using Weigh In Motion (WIM) technology and the numbers of systems that they deploy are on the increase.