Skip to main content

Hyped has hyperloop hopes

Student group says it made serious progress with asynchronous motors this year
By David Arminas May 20, 2020 Read time: 2 mins
Linear induction motors with multiple poles help achieve maximum thrust, says Hyped

Hyped, a student group at Scotland’s University of Edinburgh, claims to have pushed forward the technology that could make the hyperloop concept a reality.

Hyped says it has produced in the past several months a more efficient linear induction motor (LIM), a stronger and lighter chassis and an improved braking system.

Hyperloop - a proposed network of near-vacuum steel tubes for people and cargo in magnetically levitating pods - could cover the 650km between Edinburgh and London in around 45 minutes, according to advocates of the system. The fastest trains take just under four and half hours.

Hyped said it made serious progress with asynchronous motors this year, removing the need for a rotating rotor which had previously limited the maximum speed.

LIMs with multiple poles help achieve maximum thrust and efficiency while reducing the static end-effects.

A complex modular power system supplies these motors. By separating the power source from the series connection components, Hyped said it has ensured minimum risk for those working on the project.

Accommodating the powerful LIMs required an ultra-strong chassis without compromising on weight: Hyped produced a 1.5m-long chassis that weighed just 15kg and was comprised of material from last year’s chassis.

Implementing a sandwich structure of carbon-fibre reinforced polymer laminates around an aluminium honeycomb core had worked very well in the past.

However, due to the large forces of attraction created by the newly improved LIMs, additional stiffening was required and achieved with composite panels.

Epoxies and polyurethanes are typically used to attach the panels. But Hyped’s engineers used a methacrylate adhesive to achieve a 33.2% weight reduction - even with the composite panels added. This resulted in a strong and lightweight structure.

A reliable, strong and compact braking system was achieved this year with a primary system of symmetric, magnetic brakes.

Magnets attached to a moving hyperloop pod will generate a magnetic field that changes relative to the conductive aluminium I-beam. This induces a magnetic field in the rail that will oppose the pod’s motion and decelerate it.

This system doesn’t produce fine particulates during braking because it removes all direct contact, using magnetic forces instead, Hyped says. A secondary system of friction brakes is used for low speeds where magnetic breaking is less effective.

Related Content

  • First full-scale Hyperloop test track ‘planned for 2016’
    March 2, 2015
    According to website The Verge, Hyperloop Transportation Technologies (HTT) has secured land for the first full-scale Hyperloop, planned for a 2016 launch in the California model town of Quay Valley. Building off Elon Musk's freely available designs, the crowdfunded company has marked out a five-mile stretch of Quay Valley adjacent to California's Interstate 5 freeway as a place where the innovative transportation system can be deployed. If successful, it would be the first full-size implementation of Musk'
  • EPS shows new anti-terrorist barrier
    March 21, 2018
    Terrorists using vehicles to drive into crowds of pedestrians has become an all-too-common phenomenon in recent years. Preventing them from carrying out such attacks is the aim of a new barrier system from EPS. The Italian company’s Hostile Vehicle Mitigation (HVM) system consists of a series of hexagonal bases, each holding a large vertical pillar. The system is made of steel throughout, with the individual bases able to be connected with steel pins to create a customised barrier.
  • Don’t look at the jigsaw pieces – see the whole puzzle, says CCTA
    February 19, 2024
    There are three main barriers to taking transport ideas from the pilot stage to real-life usage: incompatible technology, local control and limited funding. Tim Haile of California’s Contra Costa Transportation Authority has some thoughts on how to overcome them
  • Integrate systems to reduce roadside infrastructure
    January 27, 2012
    David Crawford reviews promising current developments. Instrumentation of the road infrastructure has grown to become one of the most dynamic sectors of the ITS industry. Drivers for its deployment include global concerns over the commercial and environmental pressures of traffic congestion, the importance of keeping drivers informed throughout their journeys, and the need to reduce accident rates and promote the safety of all road users, for example by enforcing traffic safety rules.