Skip to main content

Hyped has hyperloop hopes

Student group says it made serious progress with asynchronous motors this year
By David Arminas May 20, 2020 Read time: 2 mins
Linear induction motors with multiple poles help achieve maximum thrust, says Hyped

Hyped, a student group at Scotland’s University of Edinburgh, claims to have pushed forward the technology that could make the hyperloop concept a reality.

Hyped says it has produced in the past several months a more efficient linear induction motor (LIM), a stronger and lighter chassis and an improved braking system.

Hyperloop - a proposed network of near-vacuum steel tubes for people and cargo in magnetically levitating pods - could cover the 650km between Edinburgh and London in around 45 minutes, according to advocates of the system. The fastest trains take just under four and half hours.

Hyped said it made serious progress with asynchronous motors this year, removing the need for a rotating rotor which had previously limited the maximum speed.

LIMs with multiple poles help achieve maximum thrust and efficiency while reducing the static end-effects.

A complex modular power system supplies these motors. By separating the power source from the series connection components, Hyped said it has ensured minimum risk for those working on the project.

Accommodating the powerful LIMs required an ultra-strong chassis without compromising on weight: Hyped produced a 1.5m-long chassis that weighed just 15kg and was comprised of material from last year’s chassis.

Implementing a sandwich structure of carbon-fibre reinforced polymer laminates around an aluminium honeycomb core had worked very well in the past.

However, due to the large forces of attraction created by the newly improved LIMs, additional stiffening was required and achieved with composite panels.

Epoxies and polyurethanes are typically used to attach the panels. But Hyped’s engineers used a methacrylate adhesive to achieve a 33.2% weight reduction - even with the composite panels added. This resulted in a strong and lightweight structure.

A reliable, strong and compact braking system was achieved this year with a primary system of symmetric, magnetic brakes.

Magnets attached to a moving hyperloop pod will generate a magnetic field that changes relative to the conductive aluminium I-beam. This induces a magnetic field in the rail that will oppose the pod’s motion and decelerate it.

This system doesn’t produce fine particulates during braking because it removes all direct contact, using magnetic forces instead, Hyped says. A secondary system of friction brakes is used for low speeds where magnetic breaking is less effective.

Related Content

  • Kapsch wooden gantry installed on Austrian highway
    July 18, 2024
    Renewable timber construction means Asfinag installation 'saves 15 tonnes of CO2'
  • Stella Vie solar car shows way forward
    March 21, 2018
    The low-slung, curved roofline reminds you initially of a tortoise, but the latest solar-powered car from the Eindhoven University of Technology has a performance of which even the speediest tortoise can only dream. The ultra-streamlined Stella Vie car, built by students in 10 months from September 2016 for the World Solar Challenge, can get up to a highly-respectable 120km/h and travel up to 1000km on a sunny Dutch day. That comes from a lithium-ion battery that generates sufficient power for 600km, toppe
  • ANPR - cost-efficient traffic management, enforcement and more
    January 23, 2012
    Geoff Collins of Vysionics Intelligent Traffic Solutions talks about the near-term prospects of ANPR. The continued absence of a champion for its cause is preventing digital enforcement technology from delivering the true levels of cost-effectiveness of which it is capable, according to Geoff Collins, sales and marketing director of ANPR specialist Vysionics Intelligent Traffic Solutions.
  • Green Light WIM
    July 30, 2012
    Beginning in the 1990s, Oregon was one of the first US states to use weigh-in-motion scales and transponder-based systems to enable trucks to avoid having to stop at weigh stations. Its Green Light preclearance system soon became a model for similar deployments throughout the country. Today, Green Light annually weighs and screens 1.6 million trucks as they approach 21 Oregon weigh stations and it preclears 1.5 million of them.