Skip to main content

Hyped has hyperloop hopes

Student group says it made serious progress with asynchronous motors this year
By David Arminas May 20, 2020 Read time: 2 mins
Linear induction motors with multiple poles help achieve maximum thrust, says Hyped

Hyped, a student group at Scotland’s University of Edinburgh, claims to have pushed forward the technology that could make the hyperloop concept a reality.

Hyped says it has produced in the past several months a more efficient linear induction motor (LIM), a stronger and lighter chassis and an improved braking system.

Hyperloop - a proposed network of near-vacuum steel tubes for people and cargo in magnetically levitating pods - could cover the 650km between Edinburgh and London in around 45 minutes, according to advocates of the system. The fastest trains take just under four and half hours.

Hyped said it made serious progress with asynchronous motors this year, removing the need for a rotating rotor which had previously limited the maximum speed.

LIMs with multiple poles help achieve maximum thrust and efficiency while reducing the static end-effects.

A complex modular power system supplies these motors. By separating the power source from the series connection components, Hyped said it has ensured minimum risk for those working on the project.

Accommodating the powerful LIMs required an ultra-strong chassis without compromising on weight: Hyped produced a 1.5m-long chassis that weighed just 15kg and was comprised of material from last year’s chassis.

Implementing a sandwich structure of carbon-fibre reinforced polymer laminates around an aluminium honeycomb core had worked very well in the past.

However, due to the large forces of attraction created by the newly improved LIMs, additional stiffening was required and achieved with composite panels.

Epoxies and polyurethanes are typically used to attach the panels. But Hyped’s engineers used a methacrylate adhesive to achieve a 33.2% weight reduction - even with the composite panels added. This resulted in a strong and lightweight structure.

A reliable, strong and compact braking system was achieved this year with a primary system of symmetric, magnetic brakes.

Magnets attached to a moving hyperloop pod will generate a magnetic field that changes relative to the conductive aluminium I-beam. This induces a magnetic field in the rail that will oppose the pod’s motion and decelerate it.

This system doesn’t produce fine particulates during braking because it removes all direct contact, using magnetic forces instead, Hyped says. A secondary system of friction brakes is used for low speeds where magnetic breaking is less effective.

Related Content

  • August 7, 2017
    Hyperloop One completes inaugural test run
    Hyperloop One successfully completed its second phase of testing, achieving 192 mph and travelling almost the full distance of the 500-metre DevLoop track in the Nevada desert, in a tube depressurised down to the equivalent of air at 200,000 feet above sea level. The Hyperloop One XP-1, the company’s first-generation pod, accelerated for 300 metres and glided above the track using magnetic levitation before braking and coming to a gradual stop.
  • April 30, 2020
    All aboard hyperloop 'by 2040 earliest', says Lux
    Cost-per-mile estimates are rising and technical issues remain, says Lux Research
  • July 17, 2017
    Hyperloop One completes Hyperloop full systems test
    Hyperloop One has completed its first full systems Hyperloop test in a vacuum environment at the company’s test track in the Nevada desert. The vehicle coasted above the first portion of the track for 5.3 seconds using magnetic levitation and reached nearly 2Gs of acceleration, while achieving the Phase 1 target speed of 70mph. The company is now entering the next campaign of testing, which will target speeds of 250 mph. Hyperloop One tested all the system's components, including its highly efficient motor,
  • August 14, 2013
    A new direction for the future of mobility?
    Tesla and SpaceX CEO Elon Musk has unveiled his vision of a futuristic Hyperloop transport system this week, proposing to build a solar-powered network of crash-proof capsules that would whisk people from San Francisco to Los Angeles in half an hour. Musk says the Hyperloop is expected to be a closed-tube transport system not unlike the pneumatic delivery systems found in some old buildings, which use a pulse of air to move a capsule and cargo to a designated location. Based on what he has revealed to date,