Skip to main content

All aboard hyperloop 'by 2040 earliest', says Lux

Cost-per-mile estimates are rising and technical issues remain, says Lux Research
By David Arminas April 30, 2020 Read time: 2 mins
There are four main design elements creating technical challenges with the hyperloop concept (© Kateryna Antonenko | Dreamstime)

With cost-per-mile estimates rising and technical issues that remain outstanding, it is likely the first passengers will board a hyperloop in 2040 at the earliest.

Delays to its development are at the moment mostly economics and not technical, according to Lux Research a provider of tech-enabled research and advisory services and based in the US city of Boston.

“Despite the considerable amount of hype and attention that hyperloop has received and the potentially important role it could play in decarbonising long-range transit, the concept remains more or less unproven," said Christopher Robinson, Lux senior analyst.

“Serious questions remain about its economic feasibility.”

The company’s new report, Analysing the Technical Barriers to Realising the Hyperloop, focuses on the technically feasibility and cost-effectiveness of hyperloop.

It concludes that while the hyperloop concept is technically feasible, it will require significant development to become cost-effective.

Hyperloop differs from conventional rail because it operates in a vacuum system that reduces aerodynamic drag, thus enabling higher speeds and greater energy efficiency.

There are four main design elements creating technical challenges: pillar and tube design, pod design, propulsion and levitation of the pods and finally the station design.

Lux found that pod design is the fastest-growing area for hyperloop patent activity, with a focus on improving comfort and performance.

Customer comfort is important due to the pod’s compact, enclosed space with no windows. This can increase the likelihood of customers getting sick.

Optimising pod performance is key to minimising drag and reducing costs because pod design choices have a significant impact on tube design and aerodynamics.

Propulsion and levitation systems have the least patent activity, in part due to the fact that hyperloop will likely adapt magnetic levitation, or maglev, technology.

However, one of the biggest technical challenges will be identifying the optimal system pressure and minimising leakage of the vacuum system, which, if higher than expected, can increase operating costs and reduce top speeds.

“Selecting the hyperloop’s tube pressure is the most important factor impacting cost, for both operational expenses and initial capital for tube design and construction,” said Lux associate Chad Goldberg.

“Most hyperloop developers are aiming for a range between 50-250 pascals to optimise energy costs.”

As proposed hyperloop projects are seeing increasingly large estimates in cost-per-mile, along with key variables in operating costs still unknown.

This means that hyperloop projects are a long way from proving economic feasibility. Important indicators to watch for are development of high-speed and full-scale test tracks and government support, both financially and in developing hyperloop regulations.

Related Content

  • Digital Transformation is the way to comprehensive transportation 
    March 31, 2021
    Transportation worldwide needs to keep up with a variety of challenges: Frederic Giron of Forrester Consulting explains how digital technologies will be the key to making the necessary changes...
  • Report identifies opportunities for road freight carbon and cost reduction
    December 4, 2012
    Switching from diesel to gas, reducing rolling resistance and aerodynamic drag and introducing more hybrid and electric vehicles are identified as key opportunities for further cutting carbon and improving efficiency in the road freight sector, according to a new report commissioned by the Transport Knowledge Transfer Network (TKTN) and the Low Carbon Vehicle Partnership (LowCVP). The report, written by Ricardo-AEA for the project partners, focuses on the key technical opportunities, and identifies options
  • Autonomous driving and emissions regulations fuelling 48v power-net
    February 17, 2017
    The launch of autonomous vehicles and a host of electronic components render the current 12-volts (v) battery nearly unusable, says a new report by Frost & Sullivan, Strategic Analysis of the Global 48v Power-net Market. To meet stringent global emissions regulations and offer a basic semi-autonomous system, original equipment manufacturers (OEMs) must electrify components while offering a bigger source of power. Therefore, OEMs plan to migrate to a 48v power-net and use two voltages. Heavy-duty, power-h
  • Truck platooning trials take to the highways
    July 24, 2017
    There is rising enthusiasm in America and beyond for the concept of truck platooning with trials being planned in several US states, as David Crawford reports. Growing numbers of US states are considering or implementing plans for trials of electronically-linked truck platooning on public road networks. This is in response to the interest being shown by the US$70bn a year road freight industry, where fuel represents 41% of the operating costs making the prospect of improving fuel economy by trucks travellin