Skip to main content

Voi adds air quality sensor to V4 e-scooter

Data collected will be processed through micromobility company's IoT hardware
By Ben Spencer February 8, 2021 Read time: 2 mins
Voi’s V4 comes with a connected control hub to provide sub-metre positioning (© Voi Technology)

Voi has launched Voiager 4 (V4), an electric scooter equipped with smart sensors that measure noise and air quality as it travels along streets. 

The air quality sensor will measure different particles of various sizes in the air, including organic compounds or even humidity levels.

The noise sensor measures the level of sound around the scooters in decibels. 

The data collected by the sensors will be processed through Voi's Internet of Things (IoT) hardware. 

In a blog post, Voi says it will be able to see the location of the scooter, whether it has been travelling or static and provide information on air particle levels to sub-metre accuracy.

Over time, Voi will have data from all over an operational area, allowing it to pinpoint areas with high and low noise and air quality. 

The company can then share this data with its partner cities and researchers who want to use it for projects or strategies that build healthier cities. 

Additionally, the scooter’s safety features include audible alarms and indicators to help increase its visibility to vehicles and pedestrians, including vulnerable road users. 

According to Voi, turn indicators offer 360 degree visibility and allow riders to communicate their intended manoeuvres safely.

V4 has a set of indicators on the handlebars and a second set at the bottom rear of the scooter. Users can turn on the indicators using a button located to the right side of the bell while maintaining a grip on the handlebars. There are also two flashing indicators on the display area showing the user that they have the indicators turned on.

The connected control hub of the scooter is expected to provide pinpoint positioning.

To improve location accuracy, the IoT compensates for lost or degraded GNSS (global navigation satellite system) satellite signals. 

According to Voi, the IoT uses dual-band GNSS (L1 and L5 bands); comparing and averaging the two signals minimises positioning errors, since each signal can be affected differently by urban features such as tall buildings or trees or by atmospheric disruptions.

It also accesses corrections from Egnos (European geostationary navigation overlay service), provided by the European space agency. 

When GNSS-only positioning is difficult or impossible, the IoT combines information from various sensors to calculate the scooter’s current position.

Riders can unlock the scooter using a smartphone, smartwatch or transport card via contactless NFC (near field communication) technology.

For more information on companies in this article

Related Content

  • 1,500 e-scooters available in Australian cities 
    February 15, 2022
    Lime & Neuron launch geofenced vehicles in three Victorian cities as part of one-year trial
  • Air quality tops transportation agendas
    November 17, 2014
    Colin Sowman catches up on some of the latest research around outdoor pollution and looks at options available to authorities in areas of poor air quality. Iair quality hasn’t already reached the top of the agenda in transportation department meetings in your area, it probably soon will with national, trans-national and even global bodies calling for authorities to reduce pollution levels.
  • Cleverciti tech to improve LA parking
    May 17, 2021
    Solution provides digital signage to 400 spaces in an attempt to cut VMT and emissions
  • In vehicle systems allow drivers to provide travel information
    July 27, 2012
    The use of a Vehicle Data Translator will allow every vehicle on a given segment of road to contribute to a highly accurate, readily accessible source of localised weather information, thus improving safety in all conditions. Sheldon Drobot and William P. Mahoney III, US National Center for Atmospheric Research, Paul A. Pisano, USDOT/Federal Highway Administration, and Benjamin B. McKeever, USDOT/Research and Innovative Technology Administration, write. On the morning of June 10 2009, under the cover of den