Skip to main content

Voi adds air quality sensor to V4 e-scooter

Data collected will be processed through micromobility company's IoT hardware
By Ben Spencer February 8, 2021 Read time: 2 mins
Voi’s V4 comes with a connected control hub to provide sub-metre positioning (© Voi Technology)

Voi has launched Voiager 4 (V4), an electric scooter equipped with smart sensors that measure noise and air quality as it travels along streets. 

The air quality sensor will measure different particles of various sizes in the air, including organic compounds or even humidity levels.

The noise sensor measures the level of sound around the scooters in decibels. 

The data collected by the sensors will be processed through Voi's Internet of Things (IoT) hardware. 

In a blog post, Voi says it will be able to see the location of the scooter, whether it has been travelling or static and provide information on air particle levels to sub-metre accuracy.

Over time, Voi will have data from all over an operational area, allowing it to pinpoint areas with high and low noise and air quality. 

The company can then share this data with its partner cities and researchers who want to use it for projects or strategies that build healthier cities. 

Additionally, the scooter’s safety features include audible alarms and indicators to help increase its visibility to vehicles and pedestrians, including vulnerable road users. 

According to Voi, turn indicators offer 360 degree visibility and allow riders to communicate their intended manoeuvres safely.

V4 has a set of indicators on the handlebars and a second set at the bottom rear of the scooter. Users can turn on the indicators using a button located to the right side of the bell while maintaining a grip on the handlebars. There are also two flashing indicators on the display area showing the user that they have the indicators turned on.

The connected control hub of the scooter is expected to provide pinpoint positioning.

To improve location accuracy, the IoT compensates for lost or degraded GNSS (global navigation satellite system) satellite signals. 

According to Voi, the IoT uses dual-band GNSS (L1 and L5 bands); comparing and averaging the two signals minimises positioning errors, since each signal can be affected differently by urban features such as tall buildings or trees or by atmospheric disruptions.

It also accesses corrections from Egnos (European geostationary navigation overlay service), provided by the European space agency. 

When GNSS-only positioning is difficult or impossible, the IoT combines information from various sensors to calculate the scooter’s current position.

Riders can unlock the scooter using a smartphone, smartwatch or transport card via contactless NFC (near field communication) technology.

Related Content

  • February 2, 2012
    Is Europe's Galileo project value for money?
    Philippe Hamet discusses the progress of the European Union's Galileo Global Navigation Satellite System Project
  • September 11, 2014
    Jordan trials GNSS tracking for international container transport
    Findings of a Jordanian Customs’ trial of the European Global Navigation Satellite Systems (E-GNSS) and EGNOS (the European Geostationary Navigation Overlay Service which corrects GNSS errors to improve accuracy and security) are to be presented at a special event in Amman. The trial evaluated the system for tracking and tracing containers shipped across the Mediterranean Sea and the vehicles transporting the goods in Jordan.
  • July 23, 2012
    Improving the positional accuracy of GNSS road user charging
    The European GINA project is intended to address and overcome many of the institutional, technical and public acceptance hurdles currently faced by satellite-based road user charging schemes. Dave Tindall and Denis Naberezhnykh, TRL, and Laure Dezes, ERF, write. Pay-as-you-drive Road User Charging (RUC), whereby demand (or congestion) is managed by applying appropriate tariffs in order to encourage drivers to make their journeys at less busy times, on less congested routes or even on different modes, could
  • December 5, 2013
    Terrestrial solution to stellar shortcomings
    Inherent weaknesses in satellite communications are leading several countries to re-evaluate terrestrial-based backup systems. There is a tale frequently told in satellite navigation circles, of how landing systems at Newark Airport were disrupted by a truck driver using GPS jamming equipment as he drove along the New Jersey Turnpike. While there was no threat to flight safety as the interference to GPS reference stations being tested, the story highlights how apparently benign threats have the potential t