Skip to main content

Voi adds air quality sensor to V4 e-scooter

Data collected will be processed through micromobility company's IoT hardware
By Ben Spencer February 8, 2021 Read time: 2 mins
Voi’s V4 comes with a connected control hub to provide sub-metre positioning (© Voi Technology)

Voi has launched Voiager 4 (V4), an electric scooter equipped with smart sensors that measure noise and air quality as it travels along streets. 

The air quality sensor will measure different particles of various sizes in the air, including organic compounds or even humidity levels.

The noise sensor measures the level of sound around the scooters in decibels. 

The data collected by the sensors will be processed through Voi's Internet of Things (IoT) hardware. 

In a blog post, Voi says it will be able to see the location of the scooter, whether it has been travelling or static and provide information on air particle levels to sub-metre accuracy.

Over time, Voi will have data from all over an operational area, allowing it to pinpoint areas with high and low noise and air quality. 

The company can then share this data with its partner cities and researchers who want to use it for projects or strategies that build healthier cities. 

Additionally, the scooter’s safety features include audible alarms and indicators to help increase its visibility to vehicles and pedestrians, including vulnerable road users. 

According to Voi, turn indicators offer 360 degree visibility and allow riders to communicate their intended manoeuvres safely.

V4 has a set of indicators on the handlebars and a second set at the bottom rear of the scooter. Users can turn on the indicators using a button located to the right side of the bell while maintaining a grip on the handlebars. There are also two flashing indicators on the display area showing the user that they have the indicators turned on.

The connected control hub of the scooter is expected to provide pinpoint positioning.

To improve location accuracy, the IoT compensates for lost or degraded GNSS (global navigation satellite system) satellite signals. 

According to Voi, the IoT uses dual-band GNSS (L1 and L5 bands); comparing and averaging the two signals minimises positioning errors, since each signal can be affected differently by urban features such as tall buildings or trees or by atmospheric disruptions.

It also accesses corrections from Egnos (European geostationary navigation overlay service), provided by the European space agency. 

When GNSS-only positioning is difficult or impossible, the IoT combines information from various sensors to calculate the scooter’s current position.

Riders can unlock the scooter using a smartphone, smartwatch or transport card via contactless NFC (near field communication) technology.

Related Content

  • February 19, 2021
    Vodafone tests vehicle tracking tech 
    IoT platform can help autonomous trucks improve interaction with other road users
  • June 6, 2014
    Euromed countries warm to Galileo’s services
    The EU is helping countries in North Africa and the Middle East utilise Galileo’s services. With its Galileo constellation rapidly taking shape, the European Union has opened lines of communication with countries in North Africa and the Middle East with a view to assisting their governments and businesses to utilise the satellite services that extend across the Mediterranean. The services available to countries are provided through the European Global Navigational Satellite System (E-GNSS), which includes a
  • March 15, 2012
    Satellite based goods vehicle tracking comes a step closer
    A project aimed at proving the viability of satellite-based goods tracking in Europe has come to a close – establishing everything necessary for commercial services to flourish. A landmark stage was reached in tracking of goods across Europe in December last year, with conclusion of the Scutum project – ‘Securing the EU GNSS adoption in transport of dangerous materials’. This has validated the accuracy and reliability of the European Geostationary Navigation Overlay Service (EGNOS) for goods tracking and se
  • August 10, 2016
    Calculating the cost of stellar solutions
    The increasing availability and accuracy of global navigation satellite system (GNSS) is opening up low-cost options in many areas as David Crawford finds out. Boosting commercialisation of European global navigation satellite system (EGNSS) technologies for ITS initially depends heavily on demonstrating competitive and cost/benefit advantages obtainable from the deployment of EGNOS (the current European Geostationary Navigation Overlay Service), and ultimately the EU’s Galileo constellation (see box). So,